
1

CRITICAL DESIGN REVIEW

Aircraft Repair Model Simulation

TTTTEEEEAAAAMMMM 9999:::: GGGGOOOOLLLLDDDDRRRRUUUUSSSSHHHH
Nick Capron

Dave Stone
Russell Swannack
Miguel Vilchez
Kelly Yearout

Carina Lansing
Kyle Klicker
Jonathan McPherson
Andy Reynolds

October 25, 2000

Agenda

1. Requirements Changes

2. Task Update

3. Assumptions Update

4. Context Diagram

5. High Level DFD

6. Lower Level DFDs

7. Impacted Modules Update

8. Functional Design (P-Specs, Data Dict.)

9. Structural Design (Structure Chart)

2

Agenda Continued

10. Transactions

11. Traceability Approach

12. Schedule

13. Open Issues

14. Current Status

15. Action Items

Requirements Changes

Code shall facilitate the user being able to “create”
his own queuing scenarios. Ultimately (not for this
release) the user will be able to:

• Set number of service stations

• Add different aircraft

• Designate which aircraft are served by
which service stations

• Set number of queues

• Designate which aircraft can enter a
given queue

• Designate queue priority

• Designate queuing style (e.g., FIFO)

Extensibility Support:

3

Requirements Changes Cont’d

Insert/Delete Clarification:
The following functions shall be available:

• Insert a single event (arrival, departure, or
endsim) to event list

• Delete a single event (arrival, departure or
endsim) from the event list

• Delete an aircraft from any queue

• Delete an aircraft from any service station

• Downtime costs for deleted aircraft are
included in the final report

Requirements Changes Cont’d

Progress Screen:
• The ARMS progress screen shall start in

“paused” mode.

Initialization Procedure:
• User shall be able to set event execution

speed (delay time).

• User shall be able to change default
pseudo-random number seed.

4

New Tasks

• Extensibility requirement increases effort
on design and coding tasks

Assumptions Update

• User is knowledgeable enough to use the
simulation software properly.

• User understands that if he deletes a
departure event (for example) and never
reschedules a departure for that aircraft,
then that service station will be “frozen”
for the rest of the simulation.

• User understands that if he deletes the
“endsim” event, the simulation will not
stop until he inserts a new one.

5

Assumptions Update

• Simlib lists will be sufficient to handle
future extensions in the number of service
stations and queues

Context Diagram

U
S
E
R

GUI

ARMS Application

Simlib
Library

Event Logic

6

High Level DFD

Configuration
Parameters

1.
Evaluate

Input 2.
Initialize

Simulator

3.
Process
Events

Configuration
Parameters

G

U

I

Pause/
Insert/

Delete

System State

Start
Sim

Formatted

Results

Bad Input

Internal
Data

Events

Clock /
Initial Events

Queuing
Scenario

System

State

Lower Level DFD (1.)

Selection
ID

1.1
Load

Queuing
Scenario

1.2
Evaluate
of Bays

1.3
Evaluate
Random

Seed

Stored Aircraft
Parameters

G

U

I

Stations

Invalid
Input

Queuing
Scenario (QS)

stations

Station Info.
Aircraft Info.
Queue Info.

Random
Seed

Stored Queuing
Information

Random
Seed

QS

Aircraft
Parameters

QS

7

Lower Level DFD (2.)

All Arrival Events

2.1
Initialize
Simlib

2.2
Initialize

Delay
Time

Queuing
Scenario Random Seed

Random Seed

Event Times
Internal Data

Clock = Day 0

Delay Time = 1 second

QS

2.3
Initialize
Pause
Flag

Pause Flag = false

Lower Level DFD (3.)

GUI

Pause
Flag

Pause,
Flag =

true

Resume,
Flag =
false

true

Current Event,
System State

Formatted

Results

System
State

3.1.1
Delete

3.1.2
Insert

3.3
Update

GUI

3.2
Process
Internal
Events

false

Event ID, List ID

Delay Time (“throttle” value)

Delay Time,
Clock Time, QS

Clock Time,
System State, QS

Internal Data

8

Lower Level DFD (3.2)

GUI

3.2.2
Arrive

3.2.4
Endsim 3.2.3

Depart

3.2.5
Delay

3.2.1
Get Next

Event

Formatted
Results

Arrive

Endsim

Depart

Next Event

Queue
Logic;

Contents
of
Service
Stations
and
Queues;

Summary
Statistics

Current Time

Delay
Time

Internal Data

Impacted Modules

Modifications to Simlib API:

• No additional modifications
required.

9

Functional Design (P-Specs)
1. Evaluate Input

 /* Customer presses “start” button */

1.1 Load selected queuing scenario

1.1.1 Set information about service stations

1.1.2 Set information about aircraft

1.1.2 Set information about queues

1.2 Evaluate number of service stations

1.2.1 If number of service stations entered is invalid for
 scenario, reprompt for input

1.3 Evaluate random seed
1.3.1 If random seed not a number or blank,
 Use default random seed

Functional Design (P-Specs)

2. Initialize Simulator

/* Customer presses “start” button and input data is valid */

2.1 Initialize Simlib
2.1.1 Initialize random number streams

2.1.2 Initialize event List

2.1.2 Set system clock to 0

2.2 Initialize delay time to default value of 1
 second.

2.3 Initialize pause flag to default value of true.

10

3. Process Events (infinite loop)

/* Always occurs after system is initialized */

3.1 If “pause” mode is activated, process
 external events

3.1.1 If delete selected, process delete

3.1.2 If insert selected, process insert

3.2 Else, process internal events

3.2.1 Get next event from event list (via Simlib transfer array)

3.2.2 If arrive, process arrival

3.2.3 If depart, process departure

3.2.4 If endsim, process endsim

3.2.5 Wait the delay time

Functional Design (P-Specs)

3.3 Update progress GUI

3.3.1 Print event list

3.3.2 Print queue lists

3.3.3 Print service station lists

3.3.4 Print current simulation time

Functional Design (P-Specs)

11

3.1.1 Process Delete

/* Occurs if user selects pause, then delete option */

3.1.1.1 Find selected event from list using middle pointer
 algorithm.

3.1.1.2 Delete event from list

3.1.1.3 If deleting from bay, force aircraft departure.

3.1.1.4 If deleting from queue, update statistics.

3.1.2 Process Insert

/* Occurs if user selects pause, then insert option */

3.1.2.1 Find location to insert in event list using middle
 pointer algorithm

3.1.2.2 Insert event into event list

Functional Design (P-Specs)

3.2.2 Process Arrival

/* Occurs if first event in event list is an arrival */

3.2.2.1 If any service stations that can take this aircraft are empty,
 move aircraft into station and schedule next departure time.

3.2.2.2 Else, move aircraft into least filled queue that will accept it
and update queue statistics.

3.2.3 Process Departure
/* Occurs if first event in event list is a departure */

3.2.3.1 Remove aircraft from appropriate station list and update
service station statistics. (Ignore departure if no such
aircraft in that station.)

3.2.3.2 Choose next aircraft from appropriate queue, move aircraft
into station, and schedule next departure time.

Functional Design (P-Specs)

12

3.2.4 Process Endsim
/* Occurs if first event in event list is endsim*/

3.2.4.1 For each bay, update statistics for that service station
(assuming aircraft have just departed).

3.2.4.2 Generate Simlib summary data (average time spent in
 queue, average downtime, etc.).

3.2.4.3 Calculate average downtime costs for all aircraft types.

3.2.4.4 Display results on output GUI.

3.2.4.5 Exit application.

Functional Design (P-Specs)

Stored Queuing Info =
Saved information about ALL queuing scenarios (see below). This
list will eventually be updateable by the user.

Stored Aircraft Parameters =
Saved information about ALL aircraft types (see below) See SRS
for the complete table. This list will eventually be updateable by the
user.

Queuing Scenario =
List of data for each service station + list of data for each aircraft +
list of data for each queue defined in the user-specified scenario.

Service Station data =
List of aircraft IDs that it services + label + ID # (note that the ID#
identifies the corresponding Simlib list that hold the internal data for
that station).

Functional Design (Data Dict.)

13

Functional Design (Data Dict.)

Aircraft data =
Mean time between failure + distribution types + repair data + label +
ID #.

Queue data =
List of aircraft IDs that it accepts + queuing style (e.g., FIFO) + priority
level + label + ID #.

Streams =
Lists of random numbers used to calculate event times (put what
streams go to what statistics).

Event List =
Simlib list of events in ascending time order.

Event =
Time of event + event type (arrival | departure | endsim) + aircraft ID#
+ service station ID# (for departure events).

Delay Time =
The amount of time to keep each change in system state up on the
progress GUI. Can be set by “throttle” on the progress GUI.

Transfer Array =
Simlib data structure used to transfer events between lists.

Pause Flag =
Global variable indicating if user pressed the pause button on the
progress GUI.

Service Station Lists =
Simlib lists showing the contents of each service station (if full, what
aircraft is currently there).

Queue Lists =
One Simlib list for each queue in the queuing scenario showing
which aircraft are in the queue in increasing time order.

Functional Design (Data Dict.)

14

Simulation Clock =
Simlib global variable that indicates the current day of the simulation.

Statistical Counters =
Simib’s internal data storage for summary statistics about each list
(such as the number of aircraft that have passed through the queue)

Internal Data =
The data stores internal to Simlib and/or the ARMS java code. This
includes the queuing scenario, a transfer array, an event list, a list for
each queue, a list for each bay, the simulation clock, the delay time,
the statistical counters, and the pause flag.

Functional Design (Data Dict.)

Structural Design

Evaluate
Input

Initialize
Simulator

Process
Events

Load
Queuin

g
Scenar

io

Evaluate #
of Service
Stations

Evalua
te

Rando
m

Seed

Main

Init.
Simlib

Init.
Flags

Proces
s

Extern
al

Events

Proces
s

Intern
al

Events

Updat
e

Progre
ss

GUI

Insert Delete Arrive Depart Endsim

Display
Results

Wait
Delay

Get
Event

Schedule Next
Departure

15

Transactions

Event: Running stored Queuing Scenario #1.

Stimulus: User selects QS1, enters a valid
number of service stations, and
presses start.

Activity: ARMS runs to completion using the
logic defined by QS1.

Response: Results are displayed to output GUI.

Effect: Verifying the description and logic
associated with QS1.

Case 1:

Transactions

Event: Running stored Queuing Scenario #2.

Stimulus: User selects QS2, enters a valid
number of service stations, and
presses start.

Activity: ARMS runs to completion using the
logic defined by QS2.

Response: Results are displayed to output GUI.

Effect: Verifying the description and logic
associated with QS2.

Case 2:

16

Transactions

Event: Running stored Queuing Scenario #3.

Stimulus: User selects QS3, enters valid
numbers of service stations, and
presses start.

Activity: ARMS runs to completion using the
logic defined by QS3.

Response: Results are displayed to output GUI.

Effect: Verifying the description and logic
associated with QS3.

Case 3:

Transactions

Event: Running stored Queuing Scenario #3.

Stimulus: User selects QS3, enters invalid
numbers of service stations, and
presses start.

Activity: ARMS prompts user for re-entry until
valid parameters are entered.

Response: Error message is displayed to GUI.

Effect: Verifying the error checking of input
parameters.

Case 4:

17

Transactions

Event: Running stored Queuing Scenario #2.

Stimulus: User presses Pause button on progress
GUI, presses button to Delete
an aircraft from the queue, and presses
Resume.

Activity: ARMS deletes that aircraft from the
selected queue and then runs to
completion.

Response: Progress GUI shows that the aircraft has
been removed from the queue.

Effect: Verifying the Delete function.

Case 5:

Transactions

Event: Running stored Queuing Scenario #1.

Stimulus: User presses Pause button on progress
GUI, presses button to Insert an event
to the event list, and presses Resume.

Activity: ARMS prompts the user for a
description of the event, inserts the event
to the event list, and then runs to
completion.

Response: Progress GUI shows that the event has
been inserted into the event list.

Effect: Verifying the Insert function.

Case 6:

18

• Categorize/number requirements

• Identify testing method for each
requirement

• Develop Requirements Traceability
Matrix (RTM)

• Link DFD modules to RTM requirement
categories

• Test modules against assigned
requirements

Traceability Approach

Traceability Approach Cont’d

Req. ID Req. ID DFD Module Verification
System Level Sub-system Level Identifier(s) Name(s) Method Tested
A001.00 I,D

A001.01 I,D
A001.02 I,D
A001.03 I,D
A001.04 I,D
A001.05 I,D
A001.06 I,D

19

Schedule

T1: Understand Problem/Requirements
 (Client discussions, Simlib study, Java review, SRS development)

T2: Design ARMS Application
 (GUI design, PDR, CDR, Design Notebook)

T3: Code ARMS Application
 (GUI, Simlib extensions, event-handlers, User Manual)

T4: Test/Validate ARMS Application
 (Test cases, requirements validation, code modifications)

T1

T2

T3

T4

September October November December

• How to display extensibility options on
input GUI.

Open Issues

20

• Simlib/Java interface

• Project Plan, SRS, PDR

Current Status

Accomplishments:
• Critical design

• RTM

• GUI finalization

• Design Notebook

Plans:
• Coding

• Testing Plans

• Network outages

• Limited experience

Problems:
• Communications

Action Items

21

Input GUI Prototype

Progress GUI Prototype

22

Output GUI Prototype

