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1 Introduction

The Stochastic Petri Net Package (SPNP) is a versatile modeling tool for solution of Stochas-
tic Petri Nets (SPN) models. The SPN models are described in the input language for SPNP
called CSPL (C-based SPN Language). The CSPL is an extension of the C programming
language [17] with additional constructs which facilitate easy description of SPN models.
The full power and generality of C is available, but a working knowledge of C is su�cient to
use SPNP e�ectively.

The SPN models speci�ed to SPNP are actually \SPN Reward Models" or Stochastic
Reward Nets (SRNs) [5, 6] which are based on the \Markov Reward Models" paradigm
[11, 27]. This provides a powerful modeling environment for:

� Dependability (Reliability,Availability,Safety) analysis.

� Performance Analysis.

� Performability modeling.

A number of important Petri net constructs like marking dependency, variable cardinality
arc and enabling functions [5] facilitate the construction of models for complex systems. The
package also allows logical analysis on the Petri net whereby any general assertions de�ned
on the Petri net are checked for each marking of the net. The SRN may be solved to obtain
either steady-state metrics or transient metrics. The package allows the speci�cation of
custommeasures although a standard set of measures are available. The measures are de�ned
in terms of rewards associated with the markings of the SRN. Sensitivity analysis allows the
user to evaluate the e�ect of changes in an input parameter on the output measures. This
is useful in system optimization and bottleneck analysis.

This manual describes Version 3.1 of SPNP (Stochastic Petri Net Package), running
under the UNIX system on a wide array of platforms (VAX, Sun 3 and 4, Convex, Gould,
NeXT, CRAY), AIX system (RS/6000), OS/2 system (PS/2), and VMS system (VAX). The
description will apply mainly to UNIX-based systems; the appendix contains some minor
di�erences for the VMS version.

A basic knowledge of the stochastic Petri net (SPN) formalism and Markov chains is
assumed. The reader should consult [24, 25] if unfamiliar with some Petri net (PN) concepts.
The SPN model we adopt is best described in [5, 6], but it may be useful to consult [2]. For a
reference on the C language, see [17]. For further information on Markov chains, performance
modeling and reliability modeling see [29] while for performability modeling see [27, 30].
Markov and Markov reward model solution techniques are surveyed in [26]. Sensitivity
analysis of Markov and Markov reward models is discussed in [3] and the senisitivity analysis
of SRN models is discussed in [19]. Several papers have appeared in the literature where
SPNP was used [4, 7, 8, 9, 13, 12, 14, 15, 16, 20, 23, 22, 28, 18, 1]. A 6-hour long VHS tape
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for a course on \Putting Stochastic Petri Nets to Work," by K. Trivedi and G. Ciardo can
be ordered from USC-ITV by calling (213)-740-0119.

Although model hierarchies are not built into SPNP, hierarchical SRN models can be
exercised using a UNIX shell �le (VMS .com �le) and submodels can communicate infor-
mation via �les that can be declared and opened inside individual submodel SPNP in-
put �les. Examples of papers using model hierarchies and �xed-point iteration include
[4, 7, 9, 16, 20, 22, 23, 28]. In the next section, we review the SRN terminology. Then we
present the structure of the package and we explain how to describe a SRN to the package.
The format of the �les generated by the package is then presented, followed by the list of
the available options. In the conclusion we list future work planned on the package.

2 Terminology

The concept of bag will be used in the following, so we describe it here. For a complete
de�nition and examples see [25]. The concept of bag extends the one of set. If x is an
element of the set S, then S[fxg = S, but there are cases where it is important to count the
occurrences of x in S. A bag represents this by allowing repeated occurrences of the same
element, or, in other words, by attaching a positive integer count to each element of a set.
So, for example, fx;x;y; zg� fx;yg = fx; zg.

A PN is a directed graph whose nodes are partitioned into two sets, places and transitions.
Arcs can only connect a place to a transition (input arcs), or a transition to a place (output
arcs). A multiplicity (positive integer) may be attached to each arc, which is then called
a multiple arc. Intuitively, a multiple arc with multiplicity k can be thought of as k arcs
having the same source and destination.

The input (output) bag for a transition is the bag constituted by the input (output) arcs,
considered with their multiplicity. Each place may contain any number of tokens. All the
tokens are indistinguishable. A marking is a bag representing the con�guration of tokens in
the places of the PN. It can be thought as the state of the PN.

Regarding the evolution of the PN, the following terms are fundamental. A transition is
enabled if its input bag is a subbag of the (current) marking. When a transition is enabled,
it can �re, leading the PN into a di�erent marking, obtained by subtracting its input bag
from and adding its output bag to the current marking. A �ring sequence is a sequence of
transition �rings. A marking is reachable if it is obtained by a �ring sequence starting in the
initial marking. The reachability set (graph) is the set (graph) of all the reachable markings
(connected by arcs labeled with the transition �rings). A set S of transitions enabled in a
marking m is a conicting transition set if the contemporary �ring of all the transitions of
S is impossible in m, or, in other words, if the sum of the input bags of the transitions in S
is not a subbag of m.

The SPN model is obtained from the PN model by associating a probability distribution
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function to the �ring time of each transition. Additional constructs are often present as
well. In the GSPN model [2], only two distribution types are allowed: exponential and
deterministic with value 0. Transitions with an associated exponential distribution are said
to be timed; transitions with a constant 0 distribution are said to be immediate. In the ESPN
model [10], the transitions are classi�ed in a similar way, but an arbitrary distribution can be
associated to each timed transition. If two or more conicting transitions should �re at the
same moment (this event has a 0 probability if the distribution is continuous), a probability
function must specify the probability that a subset of transitions will actually �re. When the
implementation is completed, our model will be the ESPN, but for the moment it is limited
to the GSPN, so we prefer to use the general term SPN.

The parameter(s) of an exponential or general distribution are said to be marking de-
pendent if they can be di�erent in each marking. This is allowed by our de�nition; we will
show how to describe this marking dependency.

Additional constructs are used to selectively disable a transition in a marking which
would otherwise enable it. A priority is associated with each transition. If S is the set of
transitions enabled in a marking and if the transition with the highest priority among them is
k, then any transition in S with priority lower than that of transition k will be disabled. To
avoid theoretical di�culties, timed and immediate transitions cannot have the same priority.
Another way to disable a transition is the inhibitor arc. An inhibitor arc from place p to
transition t with multiplicitym will disable t in any marking where p contains at least m
tokens. If these two constructs are not su�cient to describe a particular mechanism, the
marking dependent enabling function associated with each transition can be used: if this
function evaluates to 0 in a marking, then the transition is disabled. If we ignore timing, we
can imagine an ordinary PN as a SPN where all transitions have the same priority, where
no inhibitor arcs are present, and where the enabling functions are identically equal 1.

A marking is tangible if it enables no immediate transition; it is called a vanishing mark-
ing otherwise. A marking which does not enable any transition is absorbing, hence it is
tangible by de�nition. A (maximal) set of vanishing markings that are mutually reachable
by immediate transition �rings is called a loop (of vanishing markings). A loop is said to
be absorbing if no marking in it reaches a marking outside the loop; otherwise the loop is
transient. An absorbing loop is considered an error. Transient loops are not a problem,
their interpretation is clear, and they are easily and correctly managed by the package, but,
if you know that your SRN should not contain a transient loop, you should look for them,
since they could be the manifestation of a modeling error. The reachability graph contains
an arc for each di�erent transition enabled in each marking: in particular, self transitions
(with equal input bags and output bags) are allowed by the de�nition of the model, so arcs
with coinciding source and destination may be present in the reachability graph. These arcs
are ignored during the solution steps.

Another feature of our model is the marking dependent arc multiplicity. Arcs can have a
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multiplicity which is not constant, but rather it is a function of the marking. This possibility
was de�ned because it may allow substantial reductions in the size of the reachability graph;
it also may allow to model, in a compact way, behaviors that would otherwise require complex
subnets. A typical example is the case where all the tokens from place p must be moved
to place q when transition t �res. An input arc from p to t and an output arc from t
to q, both with marking dependent multiplicity equal to the number of tokens in place p
are enough to model this behavior. Without this construct, the reachability graph would
contain all the intermediate arcs and markings corresponding to the movement of tokens,
one by one. Perhaps even more importantly, if t is timed, the stochastic behavior will not
be the same, unless the SRN explicitly models this \ushing" of tokens with an additional
immediate transition and possibly some control places. Some words of caution must be said
on this construct. First, it should be used only when really needed, because it may make
the SRN harder to understand and it and it requires more computation that a standard or
multiple arc. Then, the input and output bags for a transition in a marking are computed
by evaluating the marking dependent functions for the arc multiplicities, if any, before �ring
the transition (this is why the output arc from t to q will put the correct amount of tokens in
q). This might give rise to unintuitive or unforeseen behaviors; for example, in the ushing
of tokens just described, t is enabled in any marking, even when p is empty, unless (1) other
input arcs are de�ned for t, (2) an enabling function is used to explicitly disable t when p
is empty and possibly in other cases as well, or (3) the marking dependent arc multiplicity
function for the arc from p to t returns a positive value when p is empty (this is the most
e�cient solution if the goal is to enable t only when there are tokens to be ushed in p).

3 Structure of the package

The package is composed of several C �les. The SRN to be studied must be described in a
CSPL (C-based Stochastic Petri Net Language) �le, which is a C �le specifying the structure
of the SRN and the desired outputs, by means of prede�ned functions. The CSPL �le is
compiled, linked to the other �les constituting the package (usually kept compiled), and run,
by typing

make -f /PATH_TO_SPNP/spnp/obj/Makerun SRN=filename

where filename is your CSPL �le, without the C extension, and PATH TO SPNP represents
the UNIX path to the package on your installation.

The intermediate �les generated by the package and the �nal results will be in the
directory where �lename.c is (and where you issued the command). Files have di�erent
extensions, according to the kind of information they carry. If your CSPL �le is named
test.c, then the following �les can be generated:
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� test.o obtained when compiling test.c.

� test.rg containing the reachability graph information: composition of each marking,
description of the transition �rings between them, etc. (generated only if IOP PR RG
has value VAL YES or if IOP MC has value VAL CTMC).

� test.mc containing the (numerical) CTMC/DTMC corresponding to the SRN (gener-
ated only if IOP PR MC has value VAL YES).

� test.prb containing the (numerical) results of the analysis of the underlying CTMC:
the probabilities for each tangible marking. Currently, only the steady-state probabil-
ities for irreducible CTMC can be obtained (generated only if IOP PR PROB has
value VAL YES).

� test.out containing the requested output (according to what is speci�ed in test.c
using the provided functions).

� test.spn executable �le obtained by linking the package object �les together with
test.o.

� test.log contains all the output messages produced by the package during model so-
lution.

It is possible to check the CSPL �le for certain errors, by typing

make -f /PATH_TO_SPNP/spnp/obj/Makerun lint SPN=filename

If inconsistencies exist between the de�nition of the prede�ned functions and their usage,
they will be discovered.
Note: To save typing, you can de�ne the aliases

alias spnp "make -f /PATH_TO_SPNP/spnp/obj/Makerun SPN=\!^"

alias spnpcheck "make -f /PATH_TO_SPNP/spnp/obj/Makerun lint SPN=\!^"

(assuming that \!" is your history character) and type, regardless of your current directory,

spnp filename

spnpcheck filename
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4 CSPL

You must describe your SRN in CSPL. The syntax and the semantics of CSPL are based on
the C language, moreover a (correct) CSPL �le is a (correct) C �le too. What distinguishes
CSPL from C is a set of prede�ned functions available for the de�nition of SRN entities. If
you are not familiar with C you might not be able to exploit all the features of the language,
but you should be able to describe most of your SRN without di�culty, especially using the
�les provided as examples (named example1.c, example2.c, etc.).

Note that any legal C construct can be used, as needed. You can de�ne your own variables
and functions and use them anywhere in the CSPL �le. In particular, all the C library
functions, such as fprintf, fscanf, log, exp, etc., perform as expected. The following types
are prede�ned, for clarity purposes only: enabling type, probability type, rate type,
and reward type; the �rst type is an alias for the C type int (integer number), meant to
assume values VAL YES and VAL NO only; the others are aliases for the C type double
(double-precision oating point number).

Several constants and functions are also prede�ned, they will be described as needed.
A CSPL �le must specify the following functions: parameters, net, assert, ac init,

ac reach, and ac �nal.
In parameters, function calls to iopt, fopt, and input can be present. Their syntax

and meaning are explained in the following.

void iopt(option,value)
int option,value;

void fopt(option,value)
int option;
double value;

iopt and fopt set option option to have value value. The available options are listed in a
later section of this manual. You should always be sure to use the right function, iopt for
an integer option, fopt for a double-precision oating point option, and to pass to it a value
of the right type (respectively int or double). For example:

parameters() {

......

iopt(IOP_PR_MARK_ORDER,VAL_LEXICAL);

......

}

will cause the markings to be printed in lexical order (see later), instead of the default
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canonical order, the order in which they are found.1

double input(msg)
char *msg;

Use it to input a parameter at run time, when parameter is called. A message of the form
Please type \msg" is displayed on the screen (more precisely, on the stderr stream), and
the program waits for you to type a value (more precisely, it attempts to read a double-
precision oating point constant from the stdin stream). The assigned value is printed in
the \.out" �le, together withmsg, this is useful to recall the set of values input to a particular
CSPL �le to generate the current output. The returned value is a double, so an explicit
type conversion to int or double may be needed.

In net, function calls to place, init, trans, priority, enabling, rateval, ratedep,
ratefun, probval, probdep, probfun, srateval, sratedep, sratefun, sprobval, sprob-
dep, sprobfun, iarc, oarc, harc, miarc, moarc, mharc, viarc, voarc, and vharc can
be present. Their syntax and meaning are explained in the following.

void place(name)
char *name;

void trans(name)
char *name;

De�ne a place (a transition) with name name. A name is legal if: (1) its length is between
1 and MAXNAMELENGTH, as de�ned in the �le const.h2, usually equal 20; (2) it is
composed of the characters f0..9,a..z,A..Z, g only; (3) the �rst character is in fa..z,A..Zg.
All names must be distinct, that is, it is an error to have two places, two transitions, or a
place and a transition with the same name. Note that the keywords automatically written
by the package in the intermediate �les will always have an underscore as �rst character, to
avoid possible conicts with legal names (and to allow an easy parsing of the intermediate
�les).

void init(name,n)
char *name;
int n;

De�nes the initial number of tokens in place name to be n. By default, places are otherwise
initially empty (0 tokens).

1IOP PR MARK ORDER and VAL LEXICAL are prede�ned integer constants known to the

package.
2The de�nitions in the �les const.h and type.h are always provided with the distribution of the package,

but they should be changed only if the source code is available, since they are included in the other source

�les, hence used at compile-time.
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void priority(name,prio)
char *name;
int prio;

void enabling(name,efunc)
char *name;
enabling type (*efunc)();

De�nes the priority (the enabling function) for transition name to be prio (efunc). By
default transitions have the lowest priority (0) and have no enabling function (or better,
their enabling function is set to the constant 1).

void rateval(name,val)
char *name;
rate type val;

void ratedep(name,val,pl)
char *name;
rate type val;
char *pl;

void ratefun(name,func)
char *name;
rate type (*func)();

void probval(name,val)
char *name;
probability type val;

void probdep(name,val,pl)
char *name;
probability type val;
char *pl;

void probfun(name,func)
char *name;
probability type (*func)();

void srateval(name,val,dval)
char *name;
rate type val,dval;

void sratedep(name,val,dval,pl)
char *name;
rate type val,dval;
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char *pl;

void sratefun(name,func,dfunc)
char *name;
rate type (*func)(),(*dfunc)();

void sprobval(name,val,dval)
char *name;
probability type val,dval;

void sprobdep(name,val,dval,pl)
char *name;
probability type val,dval;
char *pl;

void sprobfun(name,func,dfunc)
char *name;
probability type (*func)(),(*dfunc)();

De�ne the rate (probability) of transition name as a constant value val of type rate type
(probability type) { remember that they are both aliases for double, or double-precision
oating point number {, or as a constant value val times the number of tokens in place pl
{ an in�nite server behavior {, or as a general marking dependent function func returning
a rate type (probability type). This also implicitly de�nes the type of transition, timed
or immediate, since rates can be de�ned only on timed transitions, and probabilities only
on immediate transitions. When sensitivity analysis is needed, both the rate (probability)
and its derivative need to be speci�ed. The latter six functions (all starting with s) specify
the rate (probability) and its derivative. Exactly one of the above twelve functions must be
used for each de�ned transition (no default type, rate, or probability exists).
Note: You cannot disable a transition by de�ning a rate or a probability that evaluates to 0
in the marking; the package exits with an error message if a non-positive rate or probability
is found for a transition which would be otherwise enabled. You must explicitly disable a
transition (for example using the enabling function) in this situation.

void iarc(t name,p name)
char *t name,*p name;

void oarc(t name,p name)
char *t name,*p name;

void harc(t name,p name)
char *t name,*p name;

void miarc(t name,p name,mult)
char *t name,*p name;
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int mult;

void moarc(t name,p name,mult)
char *t name,*p name;
int mult;

void mharc(t name,p name,mult)
char *t name,*p name;
int mult;

void viarc(t name,p name,func)
char *t name,*p name;
int (*func)();

void voarc(t name,p name,func)
char *t name,*p name;
int (*func)();

void vharc(t name,p name,func)
char *t name,*p name;
int (*func)();

De�ne respectively an input, output, or inhibitor arc from transition t name to place p name,
with multiplicity 1, constant mult (a positive integer), or given by the marking dependent
function func (returning an integer). Note that we chose to de�ne vharc for completeness,
but it is usually more e�cient to use an enabling function instead.

The functions passed as actual parameters to enabling, ratefun, probfun, viarc,
voarc, or vharc must be de�ned in the CSPL �le before being used. They express marking
dependency using the following prede�ned functions:

int mark(p name)
char *p name;

returning the number of tokens in place p name.

int enabled(t name)
char *t name;

returning 1 if transition t name is enabled, 0 otherwise.
For example, the CSPL �le of �gure 1 de�nes a SRN with two places, \left place" and

\right place", and two transitions with exponentially distributed �ring times, \from left to right"
and \from right to left". The rate of the �rst transition is determined by the function myval
to be 7.3 times the number of tokens in place \left place" while the rate of the second tran-
sition is the constant 1.0. Since the �rst transition has an in�nite-server behavior, we would
have achieved the same e�ect with
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ratefun_type myval() { return(mark("left_place") * 7.3); }

parameters() {}

net() {

place("left_place"); place("right_place");

init("left_place",4);

trans("from_left_to_right"); trans("from_right_to_left");

ratefun("from_left_to_right",myval);

rateval("from_right_to_left",1.0);

iarc("from_left_to_right","left_place");

iarc("from_right_to_left","right_place");

oarc("from_left_to_right","right_place");

oarc("from_right_to_left","left_place");

}

assert() { return(RES_NOERR); }

ac_init() {}

ac_reach() {}

ac_final() { pr_std_average(); }

Figure 1: A simple CSPL �le
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ratedep("from_left_to_right",7.3,"left_place");

which would have been more e�cient, and perhaps more clear.
WARNING: an error arises if \1" is used instead of \1.0", in the speci�cation of the

constant rate for the second transition, because the procedure call conventions of C do not
provide automatic type conversion in this case. This kind of errors is not caught by the C
compiler (\spnp" command), but it is caught by \lint" (\spnpcheck" command).

The language is powerful: using the for construct of C, for example, it is possible to
de�ne an array of places, transitions, or arcs in a compact way. The portion of CSPL �le in
�gure 2 allows the run-time de�nition of the number of stages in a subnet corresponding to an
Erlang distribution. The size of the arrays of \ph" places and \th" transitions, is determined
respectively as max+1 and max at run-time using the prede�ned input function. You will
see a message on the terminal

Please type 'number of phases' >

andmax will be set to the number you type, let's say 6. Then seven places with names \ph0",
: : : , \ph6" will be de�ned, with no tokens in them initially. Six transitions will be de�ned,
with names \th1", : : : , \th6". Finally, a sequence of arcs (\ph0",\th1"), (\th1",\ph1"), : : : ,
(\th6",\ph6") will be de�ned as well.

The CSPL �le must contain other functions: assert, ac init, ac reach, and ac �nal.
assert is called during the reachability graph construction, to check the validity of each newly
found marking. It must return RES ERROR if the marking is illegal, RES NOERR if
the marking is (thought to be) legal (RES ERROR and RES NOERR are prede�ned
values). The check on the legality of a marking is performed using the same functions used
to achieve marking dependency, namelymark and enabled. The check is by its own nature
incomplete, since it is not usually feasible to specify all the conditions that must hold (or
not hold) in a marking, but the more accurate the set of conditions is, the more con�dence
you should have in the correspondence of the reachability graph with the real system. For
example the assert de�nition in �gure 1 will not perform any check, while

assert() {

if (mark("p2") + mark("p3") != 4 || enabled("t11") && enabled("t7"))

return(RES_ERROR);

return(RES_NOERR);

}

will stop the execution in a marking where the sum of the number of tokens in places p2 and
p3 is not 4, or where t11 and t7 are both enabled. If the execution is stopped, the program
outputs information useful to debug the CSPL �le, then it exits. If the illegal marking is
caused by an unforeseen sequence of transition �rings, �nding that sequence using the output
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int max;

parameters() { max = input("number of phases"); }

net() {

int i;

char auxplace[20],auxtrans[20];

...

sprintf(auxplace,"ph0");

place(auxplace);

for (i = 1; i <= max; i++) {

sprintf(auxtrans,"th%d",i);

trans(auxtrans);

rateval(auxtrans,2.0);

iarc(auxtrans,auxplace);

sprintf(auxplace,"ph%d",i);

place(auxplace);

oarc(auxtrans,auxplace);

}

}

Figure 2: An Erlang subnet
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information is usually a fast process even in large reachability graphs (tens of thousands of
markings).

This type of check is limited, since it helps detect the presence of illegal markings, or
illegal �ring sequences, but it cannot detect the absence of legal markings, or legal �ring
sequences (which relates to the reachability set, or graph, as a whole, and cannot be checked
while the reachability graph is being built). It is important to be able to perform checks
of illegality as soon as possible, typically to debug a net which is supposed to be bounded,
but it is turns out not be. The examination of the whole (in�nite) reachability graph is out
of the question since the program will terminate printing a message for insu�cient memory.
Peterson [25] suggests to use the symbol ! as a substitute for the number of tokens in
unbounded places, but this can be applied to standard PN only, not to PN with inhibitor
arcs, where boundedness is semi-decidable.

The other functions are called at di�erent times during the analysis, to allow user-
requested actions and outputs.

ac init is called before starting the reachability graph construction. The call

pr_net_info();

can be used in it, to output data about the SRN on the \.out" �le. This is especially useful
when the number of places or transitions is de�ned at run time (otherwise it is merely a
summary of the CSPL �le).

ac reach is called after the reachability graph construction has completed. The call

pr_rg_info();

can be used in it, to output data about the reachability graph on the \.out" �le (this does
not a�ect the generation of the \.rg" �le).

When either steady-state analysis or steady-state sensitivity analysis is requested, ac �nal
is called after the solution of the CTMC has completed, to allow user-requested outputs. The
call

pr_mc_info();

can be used in it, to output data about the CTMC and its solution. In addition, the de-
sired output measures must be requested in this function. Prede�ned functions exist to print
information about each place and transition, or to allow the speci�cation of user-de�ned mea-
sures: pr std average and pr expected (also pr std average der and pr der expected
if steady-state sensitivity is performed).

pr_std_average();
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outputs, for each place, the probability that it is not empty and its average number of tokens;
for each timed transition, the probability that it is enabled and its average throughput. The
average throughput E[Ta] for transition a is de�ned as

E[Ta] =
X

i2R(a)

p(i) � �(a; i)

whereR(a) is the subset of reachable markings that enable transition a, p(i) is the probability
of marking i, and �(a; i) is the rate of transition a in marking i.

pr_std_average_der();

prints the derivatives of all the above standard measures. The function pr expected requires
the speci�cation of a string (which is written on the \.out" �le) and of a marking dependent
reward function returning a double-precision oating point number:

void pr expected(string,function)
char *string;
reward type (*function)();

The derivative of the expected value of the function can be computed using:

void pr der expected(string,function,dfunction)
char *string;
reward type (*function)(),(*dfunction)();

where (*dfunction)() is the derivative of the marking dependent reward function (*function)()
with respect to the parameter �. Both the expected value and its derivative can be computed
by using:

void pr sens expected(string,function,dfunction)
char *string;
reward type (*function)(),(*dfunction)();

For example,

pr_expected("utilization",util);

will print on the \.out" �le

EXPECTED: utilization = 3.2

if the expected value of the reward function util is 3.2. The reward function util, returning
a reward type, or double-precision oating point number, must have been de�ned prior
to its usage in pr expected, using the functions mark and enabled to express marking
dependency. In addition, the function
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rate type rate(t name)
char *t name;

can be used, to express the marking dependent rate of transition t name (de�ned as 0 when
the transition is not enabled in the marking). For example,

reward_type util() {

return(mark("p1") * mark("p7") + mark("p3") * 1.2)

}

would de�ne the utilization as the weighted (by the probability of each marking) average of
the product of the number of tokens in place p1 and p7 plus the number of tokens in place
p3 times 1.2. The function expected is also provided:

reward type expected(function)
reward type (*function)();

The returned value can be used in more complex expression (using pr expected would
print the value, but the value itself would not be made available in the function ac �nal).
Similarly the function der expected returns the derivative of the expected value:

reward type der expected(function,dfunction)
reward type (*function)(),(*dfunction)();

NOTE: Apparently similar operations have di�erent stochastic interpretations, hence
di�erent results, if performed at the event or at the expected value level. Continuing the
previous example,

reward_type ep1() { return(mark("p1")); }

reward_type ep3() { return(mark("p3")); }

reward_type ep7() { return(mark("p7")); }

.......

ac_final() {

x = expected(ep1) * expected(ep7) + expected(ep3) * 1.2;

printf("%f",x);

}

will produce a di�erent result from the one computed using util, because of the dependence
existing (in general) between the number of tokens in p1 and p3.

When transient analysis or transient sensitivity analysis is required, ac �nal is called
before the solution of the CTMC. For performing transient analysis and transient sensitiv-
ity analysis, a time point needs to be speci�ed. This can be done through the function
time value in ac �nal, de�ned as:
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void time value(t)
double t;

Whenever this function call is encountered, transient (transient sensitivity) analysis is per-
formed on the CTMC. All the user-requested outputs following this function call are com-
puted for the time t speci�ed, until a new call to time value is encountered.

Besides the expected values of the functions de�ned earlier, transient analysis also al-
lows the computation of the expected accumulated values over the interval [0; t) where
t is the time point of interest. The corresponding functions are pr std cum average,
pr std cum average der for computing the expected accumulated values and their deriva-
tives for standard measures, pr cum expected, pr der cum expected and pr sens cum expected
for computing the expected accumulated value and its derivative for user-de�ned functions.
We can also compute the time-averaged expected values of functions using pr time avg expected
as:

void pr time avg expected(function)
reward type (*function)();

As an example, consider the following:

reward type avail() { ... }

ac_final() {

double time_point;

time_value(15.05);

pr_expected("Inst. Availability",avail);

pr_cum_expected("Total jobs lost", jobslost);

for (time_point = 10.0;time_point <= 100.0;time_point += 10.0){

time_value(time_point);

pr_time_avg_expected("Interval Availability",avail);

}

pr_mtta("Mean time to failure");

}

Here, the instantaneous availability and total jobs lost is computed with time t = 15:05. The
for loop computes the interval availability in the interval [0; t), with t varying from 10 to 100
in increments of 10. The function pr mtta computes the mean time to absorption for the
SRN. This function should be used only when the underlying CTMC has absorbing states.
The syntax for pr mtta is:
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void pr mtta(string)
char *string;

The function mtta() returns the mean time to absorption.
Another function pr cum abs, which is similar to pr mtta, allows the user to compute

the expected accumulated reward until absorption for a CTMC with absorbing states. To
use this function, the corresponding reward rate should be speci�ed. The syntax for this
function is:

void pr cum abs(string,function)
char *string;
reward type (*function)();

The function cum abs(function) returns the expected accumulated reward until absorption.
Transient analysis of the underlying CTMC is dependent on the initial state probability

vector. When the initial marking is tangible, the state corresponding to this marking has
the initial probability of 1 and all the other states have an initial probability of 0. If the
initial marking is vanishing, the initial probability vector over the states of the CTMC
is automatically computed by the program. The user is also allowed to de�ne the initial
probability vector over the markings of the SRN using the function:

void set prob init(function)
reward type (*function)();

At present, user-de�ned initial probability vector is allowed only over the set of tangible
markings.

Sometimes the user may desire to print values of functions that cannot be expressed as a
simple reward de�nition, but as a function of the expected values of several reward functions.
To facilitate this, SPNP provides a special function called pr value. The corresponding
syntax is:

void pr value(string,expr)
char *string;
double expr;

Here, expr could be any expression which evaluates to a oating point number. For ex-
ample, if we wish to compute the ratio of two expected values expected(qlength) and
expected(tput) and print the result in the output �le, we can specify the following:
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pr_value("Expected Response Time",expected(qlength)/expected(tput));

This would print the following in the output �le:

VALUE: Expected Response Time = 15.7

Another general function pr message provided in SPNP allows the user to print an
arbitrary message in the .out �le. The syntax for this function is:

void pr message(string)
char *string;

5 Specialized output functions

SPNP was initially aimed at the steady-state solution of SRNs whose underlying CTMC is
ergodic. There are a number of measures which could be considered \unusual", but closely
related to steady-state. In particular, they do not require the implementation of a new
solver; they can be computed either from the steady-state probabilities, or by solving a
slightly di�erent (non-homogeneous) linear system.

These measures were de�ned and implemented to perform decomposition{iteration tech-
niques allowing the approximate solution of SRNs whose state-space is too large to be stud-
ied directly [7, 9]. They are accumulated, pr accumulated, hold cond, pr hold cond,
set prob0, and scale prob0.

reward type accumulated(function)
reward type (*function)();

void pr accumulated(string,function)
char *string;
reward type (*function)();

respectively return and print the expected value of the \accumulated reward up to absorp-
tion", according to the given initial state probability distribution, reward rate assignment,
and absorbing marking de�nition. The initial state probability distribution must be speci-
�ed by calling set prob0 or scale prob0 �rst. The reward rate assignment is speci�ed, as
usual, by function. The speci�cation of the absorbing markings requires some attention.
Since the SRNs normally managed by the package are ergodic, no absorbing markings may
be present. The underlying stochastic process is then modi�ed (for the computation of this
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measure only) so that markings whose reward is null are assumed absorbing (their outgoing
arcs in the Markov chain are ignored). If absorbing markings do indeed exist in the original
SRN, function must evaluate to zero in them (otherwise the accumulated reward would
be in�nite). Each call to accumulated (or pr accumulated) requires the solution of a
non-homogeneous linear system having as many variables as the non-zero-reward markings,
so it can be expensive.

void set prob0(function)
reward type (*function)();

void scale prob0(function)
reward type (*function)();

are used to set the initial state probability for the computation of the accumulated re-
ward up to absorption. One of them must be called before each call to accumulated or
pr accumulated. Let's de�ne �i as the value returned by function on marking i and �i
as the steady-state probability for marking i (�i = 0 if marking i is vanishing). A call to
set prob0 de�nes the initial state probability for state i to be proportional to �i:

�(0)i =
�iP
j �j

A call to scale prob0 de�nes the initial state probability for state i to be proportional to
�i�i:

�(0)i =
�i�iP
j �j�j

The de�nition of this second function may at �rst seem arbitrary; it is instead both useful
and intuitive. Assume that, given an ergodic SRN in steady-state, we want to know how long
we need to wait before a token arrives in place p: the following portion of CSPL accomplishes
this:

reward_type one() { return(1.0); }

reward_type empty() { return( mark("p") > 0 ? 0.0 : 1.0 ); }

reward_type full() { return( mark("p") > 0 ? 1.0 : 0.0 ); }

.......

ac_final() {

scale_prob0(empty);

pr_accumulated("Wait time",full);

scale_prob0(one);

pr_accumulated("Wait time",full);

}
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The �rst output gives the waiting time given that no token is in p, while the second output
gives the unconditional waiting time (that is, including the possibility that a zero waiting
time is required, when a token is already in p).

Functions hold cond and pr hold cond respectively compute and print the expected
time a condition holds true or false in steady-state:

void hold cond(cond,times)
boolean type (*cond)();
double times[2]

void pr hold cond(string,cond)
char *string;
boolean type (*cond)();

cond must be a marking-dependent function returning VAL YES if the condition holds
in the marking, VAL NO otherwise. On return, times[VAL YES] and times[VAL NO]
respectively contain the expected length of time the condition holds or does not hold in
steady-state. The idea behind this measure is to be able to condense a large Markov chain
into a two-state process. Normally the process is not a Markov chain, but the two-state
Markov chain whose transition rates are 1=times[VAL YES] and 1=times[VAL NO] can
at least be considered an approximate representation of it. The description of how this
measure is computed gives additional insight. De�ne Sy and Sn to be the sets of markings
where the condition is true and false respectively and de�ne T to be the set of tangible
markings. If IOP MC has value VAL CTMC, times[VAL YES] and times[VAL NO]
are computed respectively as

X
k2Sy\T

�k

X
i2Sy\T;j2Sn\T

�i�i;j
and

X
k2Sn\T

�k

X
i2Sn\T;j2Sy\T

�i�i;j

where �i;j is the transition rate from marking i to marking j. If IOP MC has value
VAL DTMC, times[VAL YES] and times[VAL NO] are computed respectively as

0
@ X
k2Sy\T

�k

1
A
0
@X

k2T

pkhk

1
A

X
i2Sy;j2Sn

pi�i;j

and

0
@ X

k2Sn\T

�k

1
A
0
@X

k2T

pkhk

1
A

X
i2Sn;j2Sy

pi�i;j

where �i;j is the transition probability from marking i to marking j, pj is the steady-state
probability of marking j for the DTMC, and hk is the holding time in state k for the CTMC.
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It is interesting to note that DTMC and CTMC solution may give di�erent results for
this measure. The reason is intrinsic to the di�erent approach, is not due to an error nor to
numerical roundo� or truncation. If the condition holds in tangible markingsm1 and m3 and
it does not hold in vanishing marking m2, a path (m1;m2;m3) in the reachability graph is
treated di�erently by the two approaches. The DTMC solution considers the holding time as
terminated and restarted every time the path is traversed, while the CTMC solution does not
know that the condition stops holding, even if for a null amount of time, when a transition
from m1 to m3 occurs (this information is discarded together with m2 when eliminating the
vanishing markings). The holding time computed by the DTMC solution can be shorter
than the one computed by the CTMC solution. In practically all interesting applications,
the condition holds or does not hold for a positive amount of time with probability one, so
no inconsistencies can arise.

6 Advanced CSPL features

Some features implemented in CSPL are particularly powerful and, unfortunately, complex.
Marking dependency, for example, can be di�cult to master and exploit at the beginning,
especially when applied to input and output arcs. Another feature we have already at least
partially discussed is the ability to de�ne at run-time certain characteristics of the SRN, even
the presence of a place or the priority of a transition, using the input function. This can be
stretched to the point where a single CSPL �le can actually represent a class of SRNs, not
a single one (maybe CSPL should be called a meta-SRN language), as in the Erlang subnet
example.

What was actually done in the Erlang subnet was the generation of an array of places
and transitions (with the appropriate names), but to do this, an array of names had to
be generated using the system function sprintf. Furthermore, the package had no internal
knowledge that the places (the transition) where in some sense logically connected.

This considerations prompted us to implement functions that explicitly manage arrays
of places, transitions, and even arcs.

At the moment, the approach is not very elegant or e�cient (although it is more elegant
and e�cient than the implicit approach used in the Erlang subnet example). Our choice of
the C language and the desire of a fast prototype implementation imposed some shortcomings
in the elegance of the design (the need to be constantly reminded of the dimensionality of
each array is particularly annoying, as we will see). A higher-level language, such as LISP,
would allow a more elegant speci�cation language, although it would probably be slower at
run time.

The general approach is the following. Every place and transition is considered as a
two-dimensional array. An ordinary place, for example, is considered a 1 � 1 array; a
unidimensional array of transitions, for example, is considered a n�1 array. Every prede�ned
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function is implemented as working on two-dimensional arrays of places and/or transition.
For example,

place("p");

is translated (see �le \user.h") into

Cplace("p",1,1);

Most functions described in the previous section have a corresponding 0- 1- and 2-dimensional
form, obtained by adding a \ 0", \ 1", or \ 2" to the basic function. For example, the
following are all legal and semantically equivalent:

place("p");

place_0("p");

place_1("p",1);

place_2("p",1,1);

To de�ne an array of 4 � 5 places, with names \a.0.0" through \a.3.4" use

place_2("a",4,5);

Note that, to indicate a single place in the array, the name and the indexes are used separately
(not merged using sprintf as in the Erlang subnet example):

init_2("a",1,1,3);

will set the initial number of tokens in place \a.1.1" to 3.
Sometimes a function may need to be applied to all the elements of an array. A possible

solution is to use the for construct of C, as in

trans_1("t",30);

for (i = 0; i < 30; i++)

priority_1("t",i,7);

but a simpler way is

trans_1("t",30);

priority_1("t",ALL,7);

which achieves the same results and it is both more clear and more e�cient.
The speci�cation of input, output, or inhibitor arcs is particularly complex. First of all,

there are nine possible cases, according to the dimensionality of both the transition and the
place arrays. So, for example,
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miarc_2_1("t",4,5,"p",2,3);

speci�es an input arc with multiplicity 3 from \p.2" to \t.4.5". Another di�culty is the
inadequacy of the ALL keyword, shown in the following example:

trans_2("t",6,7);

place_1("p",6);

place_0("q");

place_2("m",6,7);

iarc_2_1("t",3,ALL,"p",3);

iarc_2_0("t",ALL,ALL,"q");

iarc_2_2("t",ALL,ALL,"m",ALL,ALL);

The �rst \iarc" statement de�nes seven input arcs, from \p.3" to \t.3.0" through \t.3.6".
The second \iarc" statement de�nes 42 input arcs, from \q" to \t.0.0" through \t.5.6". The
third \iarc" statement de�nes 1764 input arcs, from each of \m.0.0" through \m.5.6" to each
of \t.0.0" through \t.5.6", while probably the intended behavior was to de�ne 42 arcs only,
from \m.i.j" to \t.i.j", for all the legal values of i and j, which should have been speci�ed as

for (i = 0; i < 6; i++)

for (j = 0; j < 7; j++)

iarc_2_2("t",i,j,"m",i,j);

Clearly the range of possible connection patterns between places and transitions is so large
that the only general approach is to require explicit declaration, arc by arc, often using the
for loop of C. The ALL keyword can be used in the cases where it represents the intended
behavior.

Two issues connected with the arrays arise in the de�nition of the marking dependent
functions. The �rst is the need to specify the behavior of a whole array of transitions (e.g.
rate) with a single function, since the purpose of allowing arrays would be at least partially
defeated if a di�erent function had to be de�ned for each transition in the array. Yet, each
transition in the array may have a slightly di�erent behavior. The solution is to pass to the
function itself the indexes of the transition in the array. For example:

trans_2("t",3,4);

ratefun_2("t",ALL,ALL,fun);

declares that the 12 transitions in the array have a marking dependent rate given by fun,
but, more precisely, the rate of \t.0.0" is given by fun(0,0), the rate of \t.0.1" is given by
fun(0,1), and so on. The de�nition of fun could be:
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rate_type fun(i,j) {

int a,b;

if (i == 0) {

return(mark_1("p",j) * 3.2);

} else {

a = mark_1("a",j);

b = mark_1("b",j);

return((a > b) ? a * 2.6 : b * 1.2);

}

}

which of course assumes that 1-dimensional arrays of places \p", \a", and \b" exists and
have dimension at least 4.

The other issue is connected to the use of the functionsmark and enabled. It is easy to
imagine situations where it would be desirable to de�ne these function as having a meaning
when applied to the whole array, rather than to a single element, similarly to what the
ALL keyword allows. Three keywords have been de�ned, to be used in this contest: SUM,
MAX, and MIN. For example,

mark_2("p",SUM,SUM);

evaluates to the total number of tokens in the array \p", while

mark_2("p",MIN,MAX);

evaluates to the minimum over i of the maximum over j of mark 2("p",i,j). When applied
to enabled, the keywords have the same meaning, just remember that, while the application
of enabled to a single transition can only return 0 or 1, the application of the same function
to a whole array can return an arbitrary non-negative integer if the keyword SUM is used.
For example,

enabled_1("t",SUM);

will return the count of the enabled transitions in the array \t".
Using the for construct of C and the input function to decide at run-time the size of

the array, a very large class of SRNs can be represented by a single CSPL �le.

7 Format of the intermediate �les

This section explains how to interpret the data in the intermediate �les generated during
the analysis of a SRN.
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7.1 \.rg" �le

This �le describes the reachability graph corresponding to the SRN. The format of the
information is the following:

_nplace = <number of places>;

_ntrans = <number of transitions>;

_places =

<pl>: <place name>;

.................

<pl>: <place name>;

_transitions =

<tr>: <transition name>;

.....................

<tr>: <transition name>;

_ntanmark = <number of tangible non-absorbing markings>;

_nabsmark = <number of (tangible) absorbing markings>;

_nvanmark = <number of vanishing markings>;

_nvanloop = <number of transient loops>;

_nentries = <number of arcs in the reachability graph>;

_reachset =

<mk><lbl> <pl>:<tk> ... <pl>:<tk>;

....................................

<mk><lbl> <pl>:<tk> ... <pl>:<tk>;

_reachgraph =

<mk> <mk>:<tr>:<val> ... <mk>:<tr>:<val>;

....................................

<mk> <mk>:<tr>:<val> ... <mk>:<tr>:<val>;

where <mk> is the integer index of a marking (non-negative for tangible markings, negative
for vanishing markings) and <lbl> is a code ( T for tangible, non-absorbing; A for tangible,
absorbing; V for vanishing marking not in a loop; L for vanishing marking in a transient
loop); <pl> is the non-negative integer internally assigned to each place (in the same order
of de�nition in the CSPL �le); <tr> is the non-negative integer internally assigned to each
transition (in the same order of de�nition in the CSPL �le); <tk> is the (positive) number
of tokens in a place; and <val> is the transition rate or probability in the marking. So, for
example, this row in the reachability set speci�cation

3_A 0:1 6:5;

means that marking 3, an absorbing tangible marking, has one token in place 0 and �ve
tokens in place 6, while this row in the reachability graph speci�cation
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-4 4:2:0.7 -6:5:0.3;

means that marking -4, a vanishing marking, goes to marking 4 by �ring transition 2 with
probability 0.7, and to marking -6 by �ring transition 5 with probability 0.3 (of course both
transition are immediate). If the option IOP PR FULL MARK is turned on, the format
for the description of the reachability set is instead

_reachset =

# <place1> <place2> ... <placeN>

<mk><lbl> <tk> <tk > ... <tk>

....................................

<mk><lbl> <tk> <tk > ... <tk>

7.2 \.mc" �le

If IOP MC has value VAL CTMC, this �le describes the CTMC derived from your SRN;
the vanishing markings are absent and only numerical rates appear. The format is:

_firstindex = 0;

_nstates = <number of states>;

_nentries = <number of arcs in the CTMC>

_order = <_FROMTO or _TOFROM>;

_matrix =

<state> <state>:<rate> ... <state>:<rate>;

..................................................

<state> <state>:<rate> ... <state>:<rate>;

[_dermatrix =

<state> <state>:<rate> ... <state>:<rate>;

..................................................

<state> <state>:<rate> ... <state>:<rate>;]

_method = <requested solution method>;

_precision = <requested precision>;

[_initstate =

<state>:<prob> ... <state>:<prob>

.........................................

<state>:<prob> ... <state>:<prob>;]

[_iterations = <maximum number of iterations>;

_solve = _ALL;]

[_time = <time_point>;

_solve = _ALL;]

...................
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[_time = <time_point>;

_solve = _ALL;]

All entries enclosed in square brackets ([...]) are optional. The transition rate matrix is
described by rows. If FROMTO is in e�ect,

7 5:0.4 8:1.2 12:100;

means that the transition rate from state 7 to state 5 is 0.4, to state 8 is 1.2, to state 12 is
100.0. The �rst index is 0, so if the number of states is 15, they will be identi�ed as 0,2,...,14.
If the order is TOFROM, the transpose of the transition rate matrix will be printed. In
our example, there will be rows

5 ... 7:0.4 ...;

8 ... 7:1.2 ...;

12 ... 7:100 ...;

The matrix order, the method for the solver, the precision, and the maximum number of
iterations can be changed by using the appropriate options in the CSPL �le.

If IOP MC has value VAL DTMC, this �le describes the DTMC derived from your
SRN, the vanishing markings are still present and probabilities are given instead of rates
(the matrix is stochastic).

7.3 \.prb" �le

This �le describes the steady-state probability for each tangible marking; it corresponds to
the result of the CTMC solution (even when the actual solution used a DTMC). The format
is the following:

_firstindex = 0;

_nstates = <same value as in input>;

_method = <method actually used>;

_totaltime = _STEADYSTATE;

_steptime = _NONE;

_precision = <the reached precision>;

_iterations = <the actual number of iterations>;

_time = <_STEADYSTATE>|<time_point>;

_probabilities =

<state>:<prob> ... <state>:<prob>

...................................

<state>:<prob> ... <state>:<prob>;

[_derprobabilities =
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<state>:<prob> ... <state>:<prob>

...................................

<state>:<prob> ... <state>:<prob>;]

[_cumprobabilities =

<state>:<prob> ... <state>:<prob>

...................................

<state>:<prob> ... <state>:<prob>;]

[_dercumprobabilities =

<state>:<prob> ... <state>:<prob>

...................................

<state>:<prob> ... <state>:<prob>;]

The method may be changed automatically, so its value in this �le reects the actual choice,
possibly di�erent from the one declared in the \.mc" �le. In the current implementation
of the steady-state solver provided within the package, SSSOR is changed automatically
into GASEI when the maximum number of iterations is reached (and the iteration count
is reset to 0). Uniformization is the only transient solution method available at the present.

8 Available options

The following will list the options, their legal values, and their type: particular care must be
taken when specifying the value, since, for example, 10 and 10.0 are di�erent constants, and
only one of them will be correct (10 for iopt, 10.0 for fopt). Use the spnpcheck command
to discover these errors.

� IOP PR MARK ORDER speci�es the order in which the markings are printed.
With VAL CANONIC order, markings are printed in the order they are found, in a
breadth-�rst search starting from the initial marking, and in increasing order of enabled
transitions indices. It is the most natural order and it is particularly helpful when
debugging the SRN. With VAL LEXICAL order, markings are printed in increasing
order, where marking are compared as words in a vocabulary, the possible number of
tokens being the alphabet, and the order of the \letters" in a \word" being given by
the order of the non-empty places in the marking: for example (2 T 3:2 4:1 5:1) comes
before (3 A 3:2 4:3 6:1). This order may be useful when searching for a particular
marking in a large \.rg" �le, although an editor with search capabilities used with the
VAL CANONIC order is usually adequate for the purpose. With VAL MATRIX
order, markings are printed in the same order as the states of the two Markov chains
built internally: the DTMC corresponding to the vanishing markings, and the CTMC
corresponding to the tangible markings. This corresponds to the following ordering:



8 AVAILABLE OPTIONS 31

type name values default
int IOP PR MARK ORDER VAL CANONIC VAL LEXICAL VAL MATRIX VAL CANONIC

int IOP PR MERG MARK VAL YES VAL NO VAL YES

int IOP PR FULL MARK VAL YES VAL NO VAL NO

int IOP PR RSET VAL YES VAL NO VAL TANGIBLE VAL NO

int IOP PR RGRAPH VAL YES VAL NO VAL NO

int IOP PR MC VAL YES VAL NO VAL NO

int IOP PR MC ORDER VAL FROMTO VAL TOFROM VAL FROMTO

int IOP PR PROB VAL YES VAL NO VAL NO

int IOP MC VAL CTMC VAL DTMC VAL CTMC

int IOP OK ABSMARK VAL YES VAL NO VAL NO

int IOP OK VANLOOP VAL YES VAL NO VAL NO

int IOP OK TRANS M0 VAL YES VAL NO VAL YES

int IOP METHOD VAL SSSOR VAL GASEI VAL TSUNIF VAL SSSOR

int IOP CUMULATIVE VAL YES VAL NO VAL YES

int IOP SENSITIVITY VAL YES VAL NO VAL NO

int IOP ITERATIONS non-negative int 2000

int IOP DEBUG VAL YES VAL NO VAL NO

int IOP USENAME VAL YES VAL NO VAL NO

double FOP ABS RET M0 non-negative double 0.0

double FOP PRECISION non-negative double 0.000001

Table 1: Available options
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vanishing, tangible non-absorbing, and tangible absorbing, each of these group ordered
in canonical order.

� IOP PR MERG MARK speci�es whether the tangible and vanishing markings
must be printed together, or two separate lists must be printed.

� IOP PR FULL MARK speci�es whether the markings are printed in long format
(a full matrix indicating, for each marking, the number of tokens in each place, possibly
zero), or short format (for each marking, a list of the number of tokens in the non-
empty places). VAL YES looks good only when the SRN has a small number of
places.

� IOP PR RSET and IOP PR RGRAPH specify whether the reachability set and
graph must be printed. VAL TANGIBLE speci�es that only the tangible markings
must be printed; it cannot be used for IOP PR RGRAPH.

� IOP PR MC speci�es whether the \.mc" �le is generated or not.

� IOP PR MC ORDER speci�es whether the transition matrix (ifVAL FROMTO)
or its transpose (if VAL TOFROM) is printed in the \.mc" �le.

� IOP PR PROB speci�es whether the \.prb" �le is generated or not.

� IOP MC speci�es the solution approach. Using VAL CTMC will transform the
SRN into a CTMC. Using VAL DTMC will use an alternative solution approach,
where the vanishing marking are not eliminated and a DTMC is instead solved. In
this case, the �rst index in the \.mc" �le is �n, if there are n vanishing markings, not
0. The package performs transient and sensitivity analysis by reducing the SRN to
CTMC. Hence this option should be set to VAL CTMC when these types of analysis
is needed.

� IOP OK ABSMARK, IOP OK VANLOOP, and IOP OK TRANS M0 spec-
ify respectively whether absorbing markings, transient vanishing loops, and a transient
initial marking are acceptable or not. If VAL NO is speci�ed, the program will stop
if the condition is encountered. If VAL YES is speci�ed, the program will signal such
occurrences, but it will continue the execution.

� IOP METHOD allows to set the numerical solution method for the CTMC,VAL SSSOR
stands for Steady State SOR, VAL GASEI stands for Steady State Gauss-Seidel,
VAL TSUNIF stands for Transient Solution using Uniformization. Note that there
are cases where SOR does not converge, while Gauss-Seidel converges, and vice versa.

� IOP CUMULATIVE speci�es whether cumulative probabilities should be computed.
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� IOP SENSITIVITY speci�es whether sensitivity analysis should be performed.

� IOP ITERATIONS speci�es the maximum number of iterations allowed for the
numerical solution.

� IOP DEBUG causes the output (on the \stderr" stream) of the markings as they
are generated, and of the transitions enabled in them. It is extremely useful when
debugging a SRN.

� IOP USENAME speci�es whether the names must be used to indicate the places and
transitions involved when printing the reachability set and graph, instead of the index
(a small integer starting at 0). Using names generates a larger \.rg" �le and prevents
its subsequent parsing (in the current version), but it is useful when debugging a SRN.

� FOP ABS RET M0 speci�es the value of the rate from each absorbing marking back
to the initial marking. If this rate is positive, these markings will not correspond to
absorbing states in the CTMC. This is useful to model a situation that would otherwise
require a large number of transitions to model this \restart". Of course the numerical
results will depend on the value speci�ed for this option.

� FOP PRECISION speci�es the minimum precision required from the numerical so-
lution. The numerical solution will stop either if the precision is reached, or if the
maximum number of iteration is reached. Both the reached precision and the actual
number of iterations are always output in the \.prb" �le, so you can (and should) check
how well the numerical algorithm performed.

9 Planned work

� A simulation solution method will be available. In this case the reachability set is
not generated (though assert can still be used). An executable �le test.sim will be
generated by linking test.o with other object �les. The output of test.sim will be
a �le test.out, analogous to the one obtained from the analytical solution, but with
con�dence intervals instead of point values.

� General or even empirical distributions will be allowed in conjunction with simulation.
A random deviate from the distribution might be needed for simulation, but even in
the presence of general distributions, an analytical solution may sometimes be feasible,
so the parameters of the distribution are needed, not a random deviate, just like in the
exponential case. A stable de�nition will be possible only after the implementation is
completed, and some experience from using the package is gained.
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� The de�nition of a higher-level language, or especially the availability of a graphical
input tool, will improve user-friendliness.

� Global checks on the absence of legal markings or �ring sequences could be performed
after the \.rg" �le is generated. A reasonable place to de�ne these checks is ac reach,
since it is called after the reachability graph construction. In ac reach you should be
able to specify the checks to be performed on the reachability graph, such as making
sure that a certain (sub)marking is matched or covered, and even list the markings
matching or covering it.

� An alternative standard format containing the distributions, instead of the averages,
is under preparation.

� The \.rg" �le is always generated if IOP MC has value VAL CTMC; an alterna-
tive data structure to avoid this write-and-read-back process is being considered (if
IOP MC has value VAL DTMC, the \.rg" �le need not be generated). An ad-
ditional problem is that, if IOP USENAME has value VAL YES, the \.rg" �le
generated cannot be (currently) read back.
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APPENDIX: VMS installation

The version running under the VMS operating system uses exactly the same source code,
hence it has the same features. Di�erences exist at the command language level, though.
First of all, two �les \.COM" are provided, instead of \make�les".

The �rst �le, SPNPINST.COM, is used to compile all the C �les composing the package.
Since it does not use the \make" facility, all the �les are recompiled, even if some of them
do not need to be recompiled. Type @SPNPINST to execute it.

The second �le, SPNP.COM, is used to run the package. It requires a �lename without
extension, as in the UNIX version. For example @SPNP TEST will run the package on the
CSPL �le TEST.C, which must exist. The interaction that follows is slightly di�erent from
the one in UNIX, again because the \make" facility is not used. First of all, if a �lename is
not speci�ed, a message will prompt the user to input one. Then the user is asked whether
the compilation of the CSPL has to take place or not, to avoid needlessly repeating it. If,
for example, the user wants to run again the SRN with di�erent run-time parameters, the
compilation does not have to be performed again, only analysis phase must be run.

A third �le, SPNPTEST.COM, is provided, to run the examples provided with the
package (EXAMPLE1.C, : : : ) on prede�ned input �les (EXAMPLE1.INP, : : : ).


