Markov Analysis of Software Specifications

JAMES A. WHITTAKER
Software Engineering Technology, Inc.

and

J. H. POORE
University of Tennessee

A procedure for modeling software usage with the finite state, discrete parameter Markov chain
is described. It involves rigorous analysis of the specification before design and coding begin.
Many benefits emerge from this process, including the ability to synthesize a macro level usage
distribution from a micro level understanding of how the software will be used. This usage
distribution becomes the basis for a statistical test of the software, which is fundamental to the
Cleanroom development process. Some analytical results known for Markov chains that have
meaningful implications and interpretations for the software development process are described.

Categories and Subject Descriptors: D.2.1 [Software Engineering]: Requirements /Specifica-
tions—Methodologies; D.2.5 [Software Engineering]: Testing and Debugging—Test data gen-
erators; D.2.8 [Software Engineeringl: Metrics—Complexity measures; D.2.9 [Software Engi-
neering]: Management—Software quality assurance; 1.6.5 [Simulation and Modeling]: Model
Development; K.6.3 [Management of Computing and Information]: Software Management
—software development

General Terms: Metrics, software development, software quality assurance, specifications, test-
data generators

Additional Key Words and Phrases: Box Structure method, certification, Cleanroom, Markov
chain, software specification, statistical test, stochastic process, usage distribution

1. MARKOV CHAINS AS MODELS FOR SOFTWARE USAGE

Cleanroom software engineering [6] results in a certification of the reliability
of a software system based on the Certification Model [2]. The Certification
Model is itself based on statistical testing [11], which requires random
selection of test cases from the input domain of a software system according
to the intended usage distribution. Two key aspects of this form of software
testing are the usage distribution and the generation of test cases. Previous

Authors’ addresses: J. A. Whittaker, Software Engineering Technology. Inc., 2770 Indian River
Blvd., Vero Beach, FL 32960; J. H. Poore, Department of Computer Science, University of
Tennessee, Knoxville, TN 37996-1301.

Permission to copy without fee all or part of this material is granted provided that the copies are
not made or distributed for direct commercial advantage, the ACM copyright notice and the title
of the publication and its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish, requires a fee and /or
specific permission.

© 1993 ACM 1049-331X /93 /0100—-0128 $01.50

ACM Transactions on Software Engineering and Methodology, Vol 2. No 1, January 1993, Pages 93-106

94 . J A. Whittaker and J. H. Poore

applications of Cleanroom have used stochastic grammars [5] as the basis for
statistical testing. In this paper we explore the closely related idea of Markov
analysis [12] of the specification of a software system as the basis for
constructing the usage distribution and for generating random test cases
based on that distribution.

Cleanroom software engineering produces software systems in a series of
increments under statistical quality control [8]. These increments are orga-
nized based on information gleaned from a Box Structure [7] analysis and
design. This results in a black box view of the system as depicted in Figure 1.
Stated differently, the black box view of the system expresses the specifica-
tion in terms of carefully detailed stimuli, responses, and transition rules.
Specifications in this form are amenable to usage modeling of the system so
specified. The point of this paper is to demonstrate that the Markov chain is
useful in defining the underlying probability system of software usage and in
guiding the statistical test.

Statistical software testing is a random experiment, and as such requires
the complete characterization of the sample space and its associated probabil-
ity distribution, the definition of the appropriate event space, and a method of
computing properties of descriptive random variables [3]. The sample space is
the input domain of the software as indicated by the enumeration of stimuli
in the specification document. The selection of points from the sample space
is governed by some unknown probability distribution. In statistical testing
the events of interest are sequences of stimuli that represent an execution of
the software. These sequences constitute the event space of the specified
software and are obtained by defining an ordering on the points in the sample
space. It is the sequences that are ultimately the important attribute of the
random experiment, for they represent the test cases for the software.
Statistical descriptions of the sequences are desirable in order to gain insight
into the makeup of the test cases and of how many are necessary to certify
the software. These descriptions are obtained by defining random variables
that describe the profile of the entire set of sequences that will be used to
certify the software.

The nature of the statistical testing experiment is centered around se-
quences of events, and as such can be modeled by a stochastic process. Thus,
we define a stochastic model to guide test case generation and to compute
pertinent usage statistics. In this paper we explore the use of the finite state,
discrete parameter Markov chain to model software usage and to conduct
statistical testing. The states of the Markov chain represent entries from the
input domain of the software. The arcs of the chain define an ordering that
determines the event space, or sequences, of the experiment. Furthermore,
the ergodic nature of the chain induces a probability distribution on the
sample space (i.e., the usage distribution) and facilitates the computation of
pertinent random variables that describe the underlying statistics of the
experiment.

The Markov chain proves to be a good model for several reasons. From the
software engineering point of view, definitions and properties of the model
ensure the testability of the software. Once a model has been built, any

ACM Transactions on Software Engineering and Methodology, Vol. 2. No. 1, January 1993.

Markov Analysis of Software Specifications . 95

Software System

Fig. 1. Black box view of a software
system.

Stimuli
Responses

number of statistically typical test cases can be obtained from the model.
From an analytical point of view, this is a tractable stochastic process and a
good basis for statistical testing. There is a rich body of theory, analytical
results, and computational algorithms. As will be shown, standard analytical
results for Markov chains have important interpretations for software devel-
opment. Furthermore, the work is based upon an analysis of the specification,
which means that all of the information provided by the model, including the
usage distribution and test cases, is available before a line of code is written.

2. MARKOV ANALYSIS OF SOFTWARE SPECIFICATIONS

The fundamental step in the Markov analysis of a software specification is to
define the underlying probability law for the usage of the software under
consideration. This analysis of the specification, performed prior to design
and coding, yields an irreducible Markov chain [3] which we call the usage
Markov chain. This chain has a unique start state S, (which represents
invocation of the software) a unique final state S (which represents termina-
tion of the software) and a set of intermediate usage states {S,}. Each usage
state is labeled with a stimulus from the input domain of the software. The
state set S = {S,,{S,}, Sy} is ordered by the probabilistic transition relation
(S x10,1] X 8). For each arc defined by this relation, the next state is
independent of all past states given the present state. This is called the
Markov property. A chain that possesses this property is said to be a first
order chain. The usage Markov chain has a two-phase construction. In the
structural phase the states and arcs of the chain are established, and in the
statistical phase the transition probabilities are assigned.

At the highest level, software usage can be described by the three-state
transition diagram depicted in Figure 2. For application software, the soft-
ware is invoked, a cycle of usage ensues, and eventually the software is
terminated and control is returned to the operating system. (An analogous
statement can be made for real-time software using “power on” and “power
off”.) The usage state is expanded by consulting the specification for all
possible actions immediately following invocation. A new state is created for
each action with an arc from the invocation state as its incoming arc. Exit
arcs from the newly created states are established by determining (from the
specification) which actions can be performed following the state in question.
These arcs can be directed to preexisting states or they can lead to the
creation of new states in the same manner. This method of creating states

ACM Transactions on Software Engineering and Methodology, Vol. 2, No. 1, January 1993.

9% . J. A. Whittaker and J. H. Poore

—_—)

Invocation Usage Termination

Fig. 2. Top level view of software usage.

yields a directed graph whose states are labeled with entries drawn from the
input domain of the software. The arcs of the graph define an ordering that
the inputs must obey.

As an example, consider the window pictured in Figure 3 and specified in
Table I. Although this is an abbreviated specification, it is sufficient to
describe the functionality for the purpose of this example. Invoking the
software causes the window to be displayed, thus a state labeled Window is
created as a neighbor of the invocation state. In order to determine the exit
arcs from this new state, each possible action from the Window state is
considered; Maximize (&), Minimize (¥v), Move, Size, and Close. The cre-
ation of these states yields the transition diagram of Figure 4. Each of these
states is analyzed in turn to determine the placement of their respective exit
arcs. The state labeled Maximize simply returns the user to a fully functional
window. Thus, the single exit arc from this state is back to the preexisting
Window state. The state labeled Minimize requires another series of states
to be created to model the icon behavior. Establishing the state Icon as a
neighbor of Minimize, we note that only one action is specified from the Icon
state, namely Restore (which simply returns the user to the window). Thus
the series, on single transitions with probability one, is Window, Minimize,
Icon, Restore, and Window. Move and Size require mouse activity to be
modeled. When either is selected, a directive to drag the mouse (Drag Mouse)
is given, followed by the direction (if more detail is desired, a distance could
also be supplied). Since the user may choose to change the direction of the
mouse movement, the exit arcs from the direction states return to Drag
Mouse in order to allow continued and varied movement. When all movement
is complete, the window is restored (marked by a return to the Window
state). Finally, the state labeled Close simply terminates the window. Thus
its single exit arc is to the termination state. The complete transition
diagram appears in Figure 5.

It is necessary to note that the construction of the usage chain is a creative
design step and not an algorithm. Formal, mathematical specification docu-
ments lend themselves to more systematic model construction than natural
language specification. Good engineering practices are emerging to guide the
design of a usage chain from a formal specification.

ACM Transactions on Software Engineering and Methodology. Vol. 2, No. 1, January 1993.

Markov Analysis of Software Specifications . 97

= | Example Window |A I v
Move

Close

Size | _ (pull down menu)

Fig. 3. An example window.

Table I. Example Software Specification

Stimulus Response
[nvocation Place the window of figure 3.2 on the
screen
Select a Expand the window dimensions to cover

the entire area of the screen

Select v Remove the window and replace 1t with
its corresponding 1con

Select - and Move the window as directed by the
choose Move from | mouse mput {obeying screen boundaries)
the pull down

menu

Select - and Size the window as directed by the mouse
choose Size from mput (obeymg mmimum and maximum
the pull down limits)

menu

Select » and Remove the window from the screen

choose Close from
the pull down
meny

Select the 1con and | Remove the icon from the screen and
release restore the window

The structural phase is complete when usage (as defined by the specifica-
tion) is completely modeled. At this stage the assignment of transition
probabilities is the last step toward completion of the chain. This step
constitutes the statistical phase of the usage model construction. There are
three approaches to the statistical phase.

The first is called the uninformed approach. It consists of assigning a
uniform probability distribution across the exit arcs for each state. This
approach, which maximizes the entropy [1] across the exit arcs, produces a
unique model and is useful when no information is available to allow a more
informed choice.

ACM Transactions on Software Engineering and Methodology. Vol. 2, No. 1, January 1993.

98 . J. A. Whittaker and J. H. Poore

Invocation Termination

Fig. 4. Expansion of the top level usage diagram.

=
B>

@
@@

M
Invocation ouse f

@ @ Termination

Fig 5. Structural phase—Constructing the usage Markov chain

The second approach, called the informed approach, can produce many
models, and is used when some actual user sequences are available. These
sequences could be captured inputs from a prototype or prior version of the
software. Each sequence represents a path through the usage chain that
takes the chain from the uninvoked state to the terminate state. Thus a set of
structurally complete sequences establishes frequency counts for each arc
traversed in the sequence set. The resulting relative frequencies can be used

ACM Transactions on Software Engineering and Methodology, Vol 2, No. 1. January 1993.

Markov Analysis of Software Specifications < 99

to estimate the transition probabilities in the usage chain. The informed
approach is driven by field data.

The third approach, called the intended approach, is similar to the in-
formed approach in that it can lead to many models, but the sequences are
obtained by hypothesizing runs of the software by a careful and reasonable
user. Relative frequency estimates of the transition probabilities are com-
puted from the symbol transition counts as in the informed approach. An
example of the counting technique appears in Table II.

We offer three approaches in order to cover all situations. The informed
approach with known sequences for one or more classes of users is best. Next
best is the intended approach where general knowledge not supported by
field data can be used. As a last resort we use the uninformed approach. The
uninformed approach can produce anomalous results in the light of knowl-
edge or intuition. For example, universally accessible “help” leads to an
artificially high probability of occurrence. Either of the other two approaches
will mitigate such problems.

The structure of the usage chain induces a probability distribution (the
usage distribution) on the input domain of the software. That is, each state i
has steady-state probability =,, which can be computed analytically and is a
direct consequence of the structure and statistics of the usage Markov chain.
Even the uninformed method of assigning transition probabilities induces, in
general, a nonuniform usage distribution on the input domain. The usage
distribution is given, along with several other analytical results, in the next
section.

3. TEST CASE GENERATION AND ANALYTICAL RESULTS

The usage Markov chain is the source of test sequences for the software. A
statistical test case is any connected state sequence of the usage chain that
begins with the invocation state and ends with the termination state. The
process of generating statistical test cases is easily automated using a
random number generator and any high-level language. One has simply to
step through the states of the chain based upon the transition probabilities.
The sequence of states visited becomes the test case. Any number of test
cases can be obtained automatically from the model.

A major advantage of using the Markov chain as the stochastic model of
software usage is that analytical descriptions of the set of test cases can be
acquired before any testing begins. One such description is the usage distri-
bution, denoted w7, of the usage chain. This vector is computed by solving the
system of equations

7= 7P (1)

where P is the transition matrix of the usage chain. (The state transition
diagram of a Markov chain can be encoded as a 2-D matrix with the state
labels as indices and the arc probabilities as entries. Note that the transition
matrix is square and each of its rows sums to one.) The strong law of large
numbers allows us to interpret each entry 7; as the expected appearance rate

ACM Transactions on Software Engineering and Methodology, Vol. 2, No. 1, January 1993.

100 - J. A. Whittaker and J. H. Poore

Table IT. Statistical Phase—Assigning the Transition Probabilities

From-State To-State Frequency Probability
Invocation Window 6 1
Window Maximize 1 1/12
Window Minimize 1 1/12
Window Move 2 1/6
Window Size 2 1/6
Window Close 6 12
Maximize Window 1 1
Minimize Icon 1 1
Icon Restore 1 1
Restore Window 1 1
Move Drag Mouse 2 1
Size Drag Mouse 2 1
Drag Mouse Window 4 4/15
Drag Mouse Up 1 1/15
Drag Mouse Down 5 13
Drag Mouse Left 3 1/5
Drag Mouse Right 2 2/15
Up Drag Mouse 1 1
Down Drag Mouse 5 1
Left Drag Mouse 3 1
Right Drag Mouse 2 1
Close Termination 6 1
Termination Invocation - 1

Captured or hypothesized sequences:
1. <Invocation > <Window > <Maximize > <Window > < Close>
< Termination>
2. <Invocation> <Window > <Miumize > <Icon > < Restore > < Window >
<Close> <Termination>
3. <Invocation><Window > <Move> <Drag Mouse> <Down><Drag-
Mouse> <Right > <Drag Mouse><Down><Drag Mouse > <Window >
<Close><Termination>
4. <Invocation><Window > <Size><Drag Mouse><Left> <Drag-
Mouse><Up><Drag Mouse><Left><Drag Mouse ><Window>
<Close> < Terminarion >
. <Invocation> <Window > <Move > < Drag Mouse><Down><Drag-
Mouse> < Left><Drag Mouse><Down><Drag Mouse > <Window >
<Close><Termination>
6. <Invocation><Window > <Size><Drag Mouse><Down> <Drag-
Mouse> <Right> < Drag Mouse> <Window > <Close > < Termination>

W

of state i in the long run. In terms of the test cases, this is the expected
appearance rate of state i asymptotically. Since each state is ultimately
associated with some part of the actual software, this information allows
testers to determine which parts of the software will get the most attention
from the test cases. Furthermore, the entries in the usage distribution for
states related in some manner (for example, states in the same window) can
be summed to obtain a long-run value for that group of states. This enables
the comparison of the usage of subsections of the software that involve
multiple states.

ACM Transactions on Software Engineering and Methodology, Vol. 2, No. 1, January 1993.

Markov Analysis of Software Specifications - 101

Properties of other random variables of interest to software testers may be
derived from the usage distribution. An interesting statistic for testers is the
number of states necessary until one can expect to generate state i. This
value, denoted x,, is computed by

Solving for x yields
X, =— (2)

When the value of x, is computed for i equal to the termination state, the
result is the expected number of states until termination of the software. For
software testers, this translates to the expected test case length for the usage
model.

The expected number of sequences necessary until state i occurs can be
derived as

s = X, TrERM

12
XTERM 5

(3)

The largest entry in the vector s identifies the amount of expected testing
until all usage states are encountered at least once. The values for 7, x, and
s, computed using the informed probabilities, appear in Table III for the
example.

The mean first passage times are useful in many applications. These values
are computed by

m]k =1+ Z p]lmlk' (4)

i*tk

Each m, is interpreted as the expected number of usage states encountered
from state j until the first occurrence of state k. This indicates the extent to
which states j and %k are encountered within the same sequence. For exam-
ple, if m , is greater than the expected test case length, then the implication
ig that the occurrence of state j followed by state k& is expected to require
multiple sequences. The mean first passage values appear in Figure 6 for the
previous example. Note that the vector x is the diagonal of this matrix, the
mean first passage from a state back to itself.

The last result discussed in this paper is the source entropy of the usage
chain. Intuitively, the source entropy quantifies the uncertainty present in a
stochastic source. This value is computed by [1]

H= _Z’n'lzpl_]logplj' (5)

i J

where 7 is the usage distribution and the p,, values are the transition
probabilities. This single number is related (exponentially) to the number of
sequences that are “statistically typical” of the Markov chain. That is, a

ACM Transactions on Software Engineering and Methodology, Vol. 2, No. 1, January 1993.

102 . J. A. Whittaker and J. H. Poore

Table III. Analytical Results for the Example Usage Model

State bid x K
Invocation 0093750 107 1
Window 0.187500 53 0.5
Muaxumize 0015625 64 6
Muumize 0015625 64 6
Icon 0.015625 64 6
Restore 0.015625 64 6
Move 0031250 32 3
Size 0.031250 32 3
Drag Mouse 0234375 4.3 04
Up 0015635 64 6
Down 0.078125 128 1.2
Left 0046875 21.3 2
Right 0031250 32 3
Close 0093759 10.7 1
Termination 0093750 107 1
v
& ¥
N M 3
$ §‘ §$’ §ode - § ¢ & §
S N S & k: N
S VS ETI ST 85 F &4
Invocation |11 1 64 62 63 64 26 26 11 74 22 31 42 9 10|
Window 10 5 63 61 62 63 25 25 10 73 21 30 41 8 9
Maximize |11 1 64 62 63 64 26 26 11 74 22 31 42 9 10
Muowmize i3 3 66 64 1 2 28 28 13 76 24 33 44 11 12
feon 12 2 65 63 64 T 27 27 12 75 23 32 43 10 11
Restore 11 1 64 62 63 64 26 26 11 74 22 31 42 9 10
Move 17 8 71 69 70 71 32 32 1 64 13 21 32 15 16
Size 17 8 71 6 70 71 32 32 1 64 13 21 32 15 16
Drag Mouse |16 7 70 68 69 70 31 31 4 63 12 20 3t 14 15
Up 17 g 71 69 70 71 32 32 1 64 13 21 32 15 16
Down 17 8§ 71 6% 70 71 32 32 1 64 13 21 32 15 16
Left 17 8 71 69 70 71 32 32 1 64 13 21 32 15 16
Right 17 8 71 69 70 71 32 32 1 64 13 21 32 15 16
Close 2 3 66 64 65 66 28 28 13 76 24 33 44 11 1
Termmatwn_l 2 65 63 64 65 27 27 12 75 23 32 43 10 lﬂ

Fig. 6. The mean first passage matrix for the example usage model (entries are rounded).

ACM Transactions on Software Engineering and Methodology, Vol. 2, No. 1, January 1993.

Markov Analysis of Software Specifications - 103

Markov chain has a set of typical sequences whose ensemble statistics closely
match the statistics of the chain. Thus, higher source entropy implies an
exponentially greater number of typical sequences, i.e., more sequences exist
because of the uncertainty present in the model.

The implication of a high source entropy in applications where a Markov
chain is used as a sequence generator is that more sequences must be
generated in order to accurately describe the Markov source. One can see
from Eq. 5 that low entropy can be attributed to a biased usage distribution
or from uneven distributions over the exit arcs of the states of the chain.

The source entropy serves as a comparative measure for usage chains with
the same structure but different transition probabilities. For example, sup-
pose one develops usage chaing U; and U, using the same structural analysis
and assigns U)’s transition probabilities using the uninformed statistical
analysis and U,’s using the informed statistical analysis. Let H, and H, be
the source entropies for U, and U,, respectively. As explained earlier, when
H, > H, one should expect to generate an exponentially greater number of
sequences using U, to obtain asymptotic behavior than using U,. U, often
serves as a good basis for determining how much the informed approach has
biased the usage chain. The values for the example are H, = 1.0884 bits for
the uninformed chain and H, = .8711 bits for the informed chain. Thus the
U, source will require fewer sequences to reach asymptotics than U,.

The analytical results obtained from the usage chain serve to give testers
advance knowledge of the time and resources it will take to conduct pre-
scribed testing for the software in question.

4. INITIAL FIELD EXPERIENCE

In this section we give an overview of the experience we have had in building
and analyzing Markov usage models. Each project presents new challenges,
each of which must be met within theoretical constraints. These solutions
might be characterized fairly as arcane technical details. While we do not
catalog tips to the practitioner here, we touch on the practical lessons learned
for each project mentioned below.

The method of usage modeling and statistical testing described in this
paper has been used with success in a demonstration project [9]. The demon-
stration was to show how Cleanrocom ideas could be applied in an environ-
ment [10] of mixing reuse of existing code units with newly developed units to
achieve planned reliability levels. A system was designed to interact with the
user through five screens in a spreadsheet style. One screen managed project
files, another managed data entry and editing, and all others provided for
parameter set-up, initiation, and display of results for curve-fitting, matrix
calculations, and similar mathematical chores. The certification aspect of the
demonstration project was based on Markov usage modeling as described
here. This project involved approximately 24,000 lines of Ada, new and
reused, and was developed and certified in four increments. A Markov chain
that modeled the entire system was developed and subsets were extracted for

ACM Transactions on Software Engineering and Methodology, Vol. 2, No. 1, January 1993.

104 . J. A. Whittaker and J H. Poore

the certification of each increment (the increments were cumulative so that
the parts of the model used in testing grew at each subsequent increment).
The entire Markov chain had 90 states and 237 arcs (3% nonzero cells in the
transition matrix). A “blunder state” was created from each state to model
illegal usage. Whenever this state appeared in a test case, a random keystroke
or series of keystrokes was applied to the software. Similarly, the model also
contained states that represent data values. For each data value, two states
were installed in the chain for legal and illegal configurations of the data,
respectively. The appearance of a data state that modeled, for example, a
string of characters, caused the generation of an appropriate set of data. In
the case of a filename, this data would consist of a string of 1-8 randomly
selected alphanumeric characters. In this case study the data values were
generated beforehand and then used when directed by the Markov chain. In
retrospect, it would have been just as easy to incorporate the additional
states into the Markov chain. Thus, we were able to randomize both the
control flow through the software and the data that was entered.

We are using Markov chains to generate test cases and certify a compre-
hensive Cleanroom CASE tool [4] that is under development at the Univer-
sity of Tennessee with IBM sponsorship. These tools are being developed for
the OS/2 environment in C. Tools for building, editing, and analyzing
Markov models are included. Since the inception of the project in 1989, eight
increments have been completed in more than 20,000 lines of C, and work
continues. Two separate usage models have been built by two different
persons. Just as two programmers can write two very different programs to
meet one and the same specification, so too can different Markov usage
models be constructed that model one specification. The first model, evolved
over seven increments, had reached some 400 states, and as a result of the
pressures of complexity and computation time, new insights led to an im-
proved model with fewer than 350 states and a better way to manage the
subtleties involved with the multitasking features of the software.

A Markov usage model has been constructed for IBM’s DB2 software
product; however, the model has not yet been used in statistical testing. The
model has approximately 2,000 states. In the course of building this model we
created a special notation for representing large models, complete with
macros. This, in turn, has presented the concept of translating models
expressed in this special notation into the usual arc-probability representa-
tion in order to facilitate working with large models.

We know of about 20 Cleanroom projects that are underway in several
companies and government agencies. Markov usage models are being used to
support certification in three or more of them. The environments range from
real-time, embedded code on a bare machine to sophisticated software engi-
neering environments. Code-size estimations range from 75,000 lines of C to
40,000 lines of Ada. These are small systems, but well beyond the scale of
academic exercises.

We do not yet have field experience with every class of software. However,
we have become relaxed about several issues. First, building usage models is

ACM Transactions on Software Engineering and Methodology. Vol 2, No 1, January 1993

Markov Analysis of Software Specifications . 105

not essentially more difficult than writing specifications or designing code. As
an activity that improves specifications, gives an analytical description of the
specification, and quantifies the testing costs, it is well worth the effort.
Constructing models is a creative process, but good engineering practices are
emerging to constrain the process.

Second, the size of the model is a function of the usage states and arcs
implicit in the specification and not of the input space. Just as a small
program can have an enormous input space or an enormous internal program
state space, a small usage model can be the source for a very complex
stochastic process.

Third, we are not concerned about computation time for model analysis.
Matrices for large models are inherently very sparse and have the property
that each row sums to one. These insure that we can use certain iterative
sparse matrix techniques which will keep computation time modest even for
models with thousands of states (should we encounter such large models).

5. CONCLUSIONS AND FUTURE WORK

We are currently investigating Markov chains to model the execution of the
test cases. We hypothesize that it is possible to develop a Markov chain that
will “evolve” as the testing process unfolds. The chain must model software
failures as well as software usage. Such a model will lead to analytical
stopping criteria and a data-driven, discrete software reliability model. We
are also working toward a reliability prediction model.

Engineering process is being developed as well as theoretical understand-
ing. This includes the process of model construction, techniques for handling
special situations, representation of complex models in simplified form, trans-
formation from one model to an equivalent model, expansion of states to
submodels, compression of submodels to states, tools for writing and editing
models, computation tools for analysis, and comparison and evaluation of
models.

Usage modeling focuses attention and resources on understanding the
customer and the product: What will the user likely do with the software?
What is the software to be capable of doing? Once an acceptable usage model
is in hand, there are no further assumptions. Everything flows analytically
and probabilistically from the model. Changes to specifications can be accom-
modated by structural changes to the model. Furthermore, as new informa-
tion is learned about users or classes of users, it can be reflected in the
parameters of the model. Statistical testing for software certification is
supported directly.

ACKNOWLEDGMENTS

The authors acknowledge the helpful conversations and interactions with
several persons, including H. D. Mills, Software Engineering Technology,
Inc., J. Hudepohl, Northern Telecom, Inc., R. Drake, R. C. Linger and M.
Pleszkoch, IBM, and M. G. Thomason, University of Tennessee. We also
appreciate the assistance of E. Ploedereder and the anonymous referees.

ACM Transactions on Software Engineering and Methodology, Vol. 2, No. 1, January 1993.

106

J. A. Whittaker and J. H. Poore

REFERENCES

1.
2.

3.

10.

11.

12.

AsH, R. Information Theory, Wiley, New York, 1966.

Currit, P. A., DyEr, M., anp MiLLs, H. D. Certifying the reliability of software. IEEE
Trans. Softw. Eng., SE-12, 1, 3-11 (Jan. 1986), 3—11.

FeLLER, W. An Introduction to Probability Theory and its Applications Vol 1, Wiley, New
York, 1950.

. FUHRER, D., Mao, H, aND Poorg, J. H. OS/2 Cleanroom environment: A progress report on

a Cleanroom tools development project. In Proceedings of the 25th Hawau International
Conference on Systems Science, IEEE Computer Society Press, Vol. 2, 1992, pp. 449-458.

. LINGER, R. C., AND MILLs, H. D. A case study in Cleanroom software engineering: The IBM

Cobol restructuring facility. In Proceedings of COMPSAC '88, IEEE, 1988

. MiLus, H. D., Dyer, M., AND LINGER, R. C. Cleanroom software engineering. IEEE Software

(Sept. 1987), 19-24.

. Mus, H. D., LiNGER, R. C., AND HEVNER, A. R. Box structured information systems. IBM

Syst. J. 26, (1987).

. MirLs, H. D., AND POORE, J. H. Bringing software under statistical quality control. Quality

Progress, (Nov. 1988), 52-55.

. Poorg, J. H.,, MiLLs, H. D., Hopkins, S. L., aAND WHITTAKER, J. A. Cleanroom reliability

manager: A case study using Cleanroom with box structures ADL. Software Engineering
Technology, Inc., IBM STARS CDRIL 1940, May 1990.

Poore, J. H., MuTcHLER, D., anp MirLs, H. D. STARS-Cleanroom reliability: Cleanroom
ideas in the STARS environment. Software Engineering Technology, Inc., IBM STARS CDRL
1710, Sept. 1989.

SEXTON, B. C. Statistical testing of software, Master’s thesis, Dept. of Computer Science,
Univ. of Tennessee, 1988.

TroMAsON, M. G. Generating functions for stochastic context-free grammars. Int¢. J. Pat-
tern Recogn. Artif. Intell. 4, 4 (April 1990), 553-572.

ACM Transactions on Software Engineering and Methodology, Vol 2, No. 1, January 1993.

