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Abstract. We describe some recent mathematical results in constructing computational

methods that lead to the development of fast and accurate multiresolution numerical methods for

solving quantum chemistry and nuclear physics problems based on Density Functional Theory

(DFT). Using low separation rank representations of functions and operators in conjunction with

representations in multiwavelet bases, we developed a multiscale solution method for integral and

di�erential equations and integral transforms. The Poisson equation, the Schrodinger equation,

and the projector on the divergence free functions provide important examples with a wide range

of applications in computational chemistry, nuclear physics, computational electromagnetic and

uid dynamics.

We have implemented this approach along with adaptive representations of operators and

functions in the multiwavelet basis and low separation rank (LSR) approximation of operators

and functions. These methods have been realized and implemented in a software package called

Multiresolution Adaptive Numerical Evaluation for Scienti�c Simulation (MADNESS).

.

1. Introduction

It was already clear in [4, 5] that multiresolution representations of functions and operators

should lead to useful numerical algorithms. However, the straightforward generalization of

such an approach from one spatial dimension to higher dimensions yields algorithms that

are too costly for practical applications. The development of e�cient and robust algorithms

using multiresolution analysis (MRA) for solving partial di�erential and integral equations in

three and higher dimensions has only recently been successfully applied [6, 13, 14, 15]. These

algorithms rely on low separation rank representation and tools for representing a particular

class of approximations using Gaussian functions [7, 8, 9, 15]. The LSR can be thought of as

an extension of the separation of variables approach where the correlation between functions

(i.e. basis functions) is small they form well separated groups of functions the of size of the
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groups is the rank. The combination of an truly orthogonal adaptive approach combined with

LSR produces a method that scales nearly linearly with increasing basis functions as well as

signi�cantly reducing the memory storage costs.

Approximations involving gaussians have a long history in quantum chemistry and in nuclear

physics, starting with [10, 18, 17]. Typically gaussians (usually with an additional polynomial

factor) are used to approximate the atomic wave functions, including their cusps. More recently,

an approximation by Gaussians of the function 1=r (Coloumb potential) along with the error

analysis has been considered in [16, 11].

In our approach we use Gaussians to construct separated representations of Green's functions

as the initial step in obtaining an e�cient multiresolution representation. In [6, 13, 14, 15] we

developed an MRA approach (using multiwavelet bases) which incorporates the advantages of

adaptive re�nement in representing functions and operators, guaranteed solution for arbitrary

(�nite) precision along with computationally fast algorithms. The speed of our algorithms is

comparable to that of the Fast Multipole Method (FMM) [12]. In fact, the approximation

technique used in our approach and that in FMM are related but this topic is beyond the scope

of this paper. We only note that our approach has advantages in higher dimensions.

Our approach, described in [9, 15], is applicable to a wide variety of kernels, including singular

kernels such as the projector on the divergence free functions and some oscillatory kernels, e.g.,

the Helmholtz kernel

e

�ikr

r

, where kr is moderately large in the region of interest. As a result, our

approach opens up new opportunities in constructing e�ective numerical methods and provides

a way of developing practical operator calculus in high dimensions. In particular, we are working

on constructing multiparticle Green's functions and spectral projectors. In this paper we briey

summarize some of our recent work and that of our collaborators in systematically applying

MRA and LSR approximations to problems in computational quantum chemistry and nuclear

physics. We also outline current research and new directions that originate in our approach.

For a non-relativistic system of electrons and nuclei, the time-independent Schrodinger

equation is given by

H	 = E	 (1)

where E is the energy for each wave function 	. Mathematically, the normalized Hamiltonian

H is of the form

H = �

N

X

i=1

r

i

2

+ V (2)

where the �rst sum is the kinetic energy operator and the second term represents the potential

energy terms such as the coulomb, electron-electron and nuclei-electron repulsions, and the

quantum mechanical e�ects of electron exchange and correlation. In electronic structure

calculations the �rst term represents the kinetic energy of the electrons while in nuclear physics

their are two kinetic energy operators one for the electrons and one for the nuclei. In addition,

the potential in nuclear physics does not contain a Coloumb type term but can contain high

gradients and the potentials are often not determined from �rst principles but rather are derived

empirically.

Our approach recasts the Schrodinger eigenproblem in 3-D as an integral equation,

	 = �G(V	) (3)

where

(G � f)(r) =

Z

e

�kjr�sj

4�jr � sj

f(s)ds: (4)

This permits us to solve the eigenproblem iteratively using �xed-point iteration with controlled

accuracy by using the MRA and LSR approaches.
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2. Low Separation Rank Representation

At the heart of our computational method is the representation of the operator and functions

in the singular and the oscillatory regions by their low separation rank approximations. The

separated representation of a multivariable function f can be written as,

jjf(x

1

; x

2

; :::x

n

)�

r

X

l=1

s

l

'

l

1

(x

1

)'

l

2

(x

2

) : : : '

l

n

(x

n

)jj � �: (5)

where the desired accuracy � is an input to the calculation and the the functions f'

l

i

(x

i

)g and

coe�cients fs

l

g are adjusted to achieve this accuracy with a minimal separation rank r. In the

same manner, we approximate multidimensional operators as a sum of products of operators

acting in each direction separately. The set of functions f'

l

i

(x

i

)g in (5) is not �xed and depends

on the function f . The functions f'

l

i

(x

i

)g come from a family of functions that is typically

too large to form a basis. Such an approach goes beyond the notion of a basis for representing

functions; we note that the algorithms for constructing and maintaining (5) are necessarily

nonlinear (see [7, 8, 9]).

In our current approach for the non-oscillatory Helmholtz kernel we use Gaussian functions

e

�pr

2

, where p > 0 and real for f'

l

i

(x

i

)g (5). We apply this approximation for the oscillatory

Helmholtz kernel, i.e. e

ikr

=r, where the functions f'

l

i

(x

i

)g in (5) are Gaussians, e

�r

2

, and � are

complex-valued. For example, the real and complex part of the Helmholtz can be approximated,

with an error of 1e�10 using 52 terms for k = 50 and using 17 terms, respectively, from

�

10

�10

; 1

�

.

3. Multiresolution Representations

We have chosen multiwavelets [1] as bases for multiresolution representation of operators in

two and three dimensions. This choice properly addresses many (contradictory) requirements

on such bases, namely, an accommodation of boundary conditions without a loss of order or

conditioning of approximation, an e�cient algorithm for point-wise multiplication as well as

availability of scale-consistent analogues of forward and backward di�erentiation (see [2]). We

start with the separated representation of the operator kernels, e.g. as in ([14]), and then

construct a non-standard representation in the multiwavelet bases. The necessary estimates are

available in [6] and corresponding algorithms were developed in [14, 15, 19, 20].

4. MADNESS

Multiwavelets were combined with low separation approximations using exponential functions

for representation of functions and operators and implemented in dimensions 1, 2, 3, and 6 in

our prototype software package Multiresolution Adaptive Numerical Evaluation for Scienti�c

Simulation (MADNESS). The initial prototype version used Python as the programming

environment enabling the application code to be written at a very high level in terms of

operators and functions, rather than the more common explicit manipulation of sparse lists

of integrals and matrices. A wide range of electronic structure capabilities were developed using

this framework. In addition, exploratory work has been conducted in fusion and uid dynamics.

The prototype runs in parallel on shared-memory computers using fork-and-join communicating

between processes via �les.

A new production version of MADNESS is being implemented with a design goal of

e�ciently exploiting O(10

6

) processors for addressing large problems while retaining the high-

level composition of applications. In e�ective one-particle (HF and DFT) calculations, there is

one 3D molecular orbital per electron (O(10

2�3

)) each with an independent, adaptively-re�ned

mesh. In e�ective two-particle calculations there is one 6D function per electron pair, and it is

desirable to compute in up to at least 9D. In addition to enabling de�nitive benchmark results

for the dynamics of few-electron systems, the ability to compute with electron pairs enables full
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numerical solution of standard quantum chemistry methods such as second-order perturbation

theory (independent, linear electron pairs) and coupled-cluster with single and double excitations

(coupled, non-linear electron pairs). Localization of the orbitals is used to reduce the overall

scaling of HF and DFT to linear in the number of electrons. C++ is used as the programming

language and a new parallel runtime based upon futures and distributed containers is used to

manage the coarse and medium grain parallelism and for recursive traversal of trees.

5. Results

Our prototype multiresolution MADNESS solver is implemented using PYTHON for high-level

control and the languages C/C++/FORTRAN for computationally intensive operation. For

the application to nuclear physics, the input potential is the Poschl-Teller-Ginocchio potential

described in [3] where we are only solving for the S eigenstates. This potential is important

in nuclear physics but the eigenvalues can be solved analytically providing a direct way of

accessing the e�ectiveness. In 3D we used 9 multiwavelets and computed with a prescribed

desired accuracy of 1:e� 3. The results are given immediately below.

Exact Value Multiwavelet results

-39.7400 -39.7399

-18.8977 -18.8976

-0.3205 -0.3201

6. Current directions

Central to advancing the state of art in computing and, as a result, in quantum chemistry,

materials science and physics, is computing in high dimensions. To this end, we are developing

mathematical tools for making a transition from one-particle approximations (DFT, LDA,

Hartree-Fock) to the two-particle approach. This requires computing in six spatial dimensions.

Time dependent problems are also of interest and we are formulating several schemes with initial

application to evolution of electronic systems in three and six dimensions. We are interested in

generalizing results in [9] for computing (5) so that the family of functions f�

l

i

(x

i

)g are Gaussians,

e

�p

1

x

2

1

e

�p

2

x

2

2

� � � e

�p

n

x

2

2

, where the exponents p

1

; p

2

; : : : p

n

are allowed to be distinct in di�erent

directions. This will allow us to construct approximations to multiparticle Green's functions

and spectral projectors. We also continue the work on general separated representations started

in [7, 8].
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