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I. MADNESS

• About MADNESS
• Computing goals
• Motivation for this work
• Math overview
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MADNESS

• Multiresolution Adaptive Numerical
Environment for Scientific Simulation

• “Environment for prototyping and
developing scientific applications using
multiresolution analysis and low
separation rank methods”

• Project participants include George Fann,
Robert Harrison, Gregory Beylkin,
Shinichiro Sugiki, and Arianna Beste
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MADNESS
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Computing Goals

• Run on leadership supercomputers; e.g.,
ORNL’s Jaguar Cray XT-4, Argonne’s
BlueGene/L, more advanced future
systems

• Compute using 103–104 processors
• Solve problems having trees with millions

or billions of nodes
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Motivation for this Work

• Effective use of leadership resources
requires even distribution of
computational work

• Efficiency suffers if load imbalanced
• Implementing good load balancing

techniques crucial to development of
MADNESS
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Math Overview

• Multiresolution analysis
• Low separation rank methods
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Multiresolution Analysis:
Representing a Function

• Fourier representation:
 Any periodic function breaks down into sum of sines

and cosines
 Drawbacks: sinusoids very smooth, very broad
 Poor performance for representation of non-smooth

functions (e.g., Gibbs phenomenon)
• Wavelet representation:

 Basis generated by dilating and translating single
scaling function ψ(x)

 Subject to good choice of ψ(x), any L2 function can be
approximated up to arbitrarily high precision
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Multiresolution Analysis: Scaling
Function Space

• Chain of embedded, closed subspaces

• with properties

• Subspace V0 invariant under integer translations
• Subspaces Vj all scaled versions of one another
• One or more scaling functions are in V0 such that

rescaled and shifted versions, of form 2j/2φ(2jx-k),
constitute orthonormal basis of Vj.
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Low Separation Rank (LSR)
Methods
• Separation rank:

 Generalization of separation of variables
 Value m such that for d-dimensional function

• Benefits of LSR representations
 All operations are one-dimensional
 Low storage requirements
 Constructive algorithms for reduction of separation rank

exist
 Removes curse of dimensionality

• Many “interesting”operators and functions have
LSR representations

  

! 

f (x
1
,x

2
,K,xd ) " si#1

i
(x
1
)

i=1

m

$ #
2

i
(x

2
)L#d

i
(xd ) < %

12

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

• Telescoping subspaces Vk translate into tree form

• Adaptive refinement and truncation of coefficients
means not all intervals subdivided

Representing a Function
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Representing a Function

• Same form for
multiple dimensions
(tensor product)

• Typical basis
functions: Legendre
multiwavelet basis
(Legendre
polynomials rescaled
to unit interval)

14

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

Trees

• Result of adaptive refinement of spatial
domain
 2-D: quadtrees
 3-D: octrees

• O(106)–O(109) nodes
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II. Load Balancing

• Load balancing paradigms
 Overview
 Pros and Cons

• Existing software
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Load Balancing Paradigms

• Geometric partitioning methods
• Global graph-based partitioning methods
• Local graph-based partitioning methods
• Random distribution
• (Octree partitioning methods)
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Geometric Partitioning Methods

• Exploit geometric coordinates of local domain to
keep data local

• Useful when data locality is important; e.g.,
particle simulations

• Examples: recursive coordinate bisection, space-
filling curves

• Pros:
 Easy to implement
 Quick execution

• Cons:
 Some methods unsuitable for dynamic load balancing
 Produces partitions of moderate quality
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Global Graph-Based Partitioning
Methods
• Represent problem domain as graph and find

best graph partitioning
• Can also represent domain as hypergraph, for

more accurate modeling of communication costs
• Example: recursive spectral bisection, multilevel

partitioning
• Pros:

 Accurate models
 Partition of very high quality

• Cons:
 Very expensive to implement
 Not readily parallelizable
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Local Graph-Based Partitioning
Methods
• Improve load balance over subset of load (e.g.,

subset of processors, subset of domain)
• Example: diffusion model of dynamic load

balancing
• Useful when point imbalances occur or in case of

completely embarrassingly parallel load
• Pros:

 Easy to implement
 Readily parallelizable
 Fast
 Produce good partitions

• Cons:
 Orthogonal goals (processors vs domain)
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Random Distribution

• Get good load balance by randomly
distributing work over processors

• Pros:
 Excellent balance of work
 Trivial to implement

• Cons:
 No locality
 High communication volumes
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Octree Partitioning Methods

• Subset of geometric partitioning methods
• Exploit octree structure of geometric partitioning
• Pros:

 Easy to implement
 Quick execution

• Cons:
 Usually, for finite elements, care only about leaf nodes,

but we need to partition entire tree
 For partitioning octree structure, data locality only

obliquely related to tree locality
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Octree Partitioning Methods

• Determine ideal partition size
• Traverse tree, adding subtrees to partition

until filled, then proceed to next partition
• Continue traversing tree until all partitions

full
• Traversal method:

 Depth-first traversal
 Space-filling curve traversal
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Depth-First Partitioning

24

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

Depth-First Partitioning
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Depth-First Partitioning
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Depth-First Partitioning
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Existing Software

• Geometric Partitioning
 Zoltan
 DRAMA

• Graph-Based Partitioning
 Zoltan
 ParMetis
 PJostle
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III. Load Balancing in MADNESS

• Formal problem statement
• Motivation
• Melding heuristic
• Example
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Formal Statement of Load
Balancing Problem (1)

• Given a tree T with N nodes {t0,…,tN-1} and
machine M with P processors {m0,…,mP-1}, find
mapping s.t. every ti ∈ I = {0,…,N-1} is assigned to
single mj ∈ J = {0,…,P-1} at cost cij

• Formally:

where
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min cij xij
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Formal Statement of Load
Balancing Problem (2)

• Cost function cij is not constant
 cij =αi +βi(1-xi’j), where ti’ is ti’s parent

• If ti assigned to same processor as parent,
then no communication cost βi.

• Problem is identical to Generalized
Assignment Problem
 Integer programming problem
 NP-complete
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Motivation

• Top picture: depth-first
partitioning

• Bottom picture: “eyeball”
partitioning

• Come up with method that
exploits structure of octree

• Select best partition as
function of target
computer’s computation
and communication
speeds
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Melding Heuristic

• Melding: make parent and
leaf children inseparable
before load balancing
performed

• Recursively meld and load
balance, and select best
configuration for target
computer, based on its
computation and
communication speeds

(from http://www.answers.com/topic/vulcan-star-trek)
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Example: Initial Tree
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Example: First Step



Rebecca J. Hartman-Baker

Load Distribution in MADNESS 18

35

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

Example: Second Step
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Example: Third Step
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Example: Summary

19.45347
18.70442
21.60936

Cost (0.35 x
Load + Links)

# Broken
Links

Maximum
Load

Best configuration for given machine may be
suboptimal in load and broken links
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Example: Communication Patterns

As algorithm progresses,
communication volume
decreases and pattern
resembles tree

Step 1
Step 2

Step 3
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IV. Implementation and Results

• Implementation of MADNESS
• Implementation of load balancing
• Preliminary performance evaluation
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Implementation of MADNESS

• Original proof-of-concept was written in Python
• New MADNESS written in C++
• Object-oriented design
• User transparency

from http://xkcd.com/c292.html
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Implementation: Trees

• Trees stored across machine in distributed
container class, similar to STAPL
 STL map-like WorldContainer stores node coefficients

using node coordinates as key
 Remote or local find(key) transparent to user

• Procmap: assigns nodes to processors based on
 Hashing of key (hash(key) mod nproc)
 Location of nearest ancestor
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Implementation: Communication

• Multithreaded parallel asynchronous
communication (Cilk-like)

• Asynchronous communication with
Futures
 Store unevaluated expression in variable of

type Future; reference to result forces
evaluation of Future if not yet evaluated

 Implemented as templated C++ class with
thread pool
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Implementation: Load Balancing

• Load Balancing class LoadBalImpl sets up load
balancing

• Creates stand-in (skeleton) tree (in another
WorldContainer) having same structure as
octree, upon which melding algorithm is
performed

• Skeleton has diagnostic data in nodes, used for
depth-first partitioning

• skel_tree.load_balance() results in new
procmap, then real data copied over to new
configuration
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Implementation: Depth-First
Partitioning

• Like algorithm demonstrated earlier
• Assign “fudge factor,” percentage for acceptable

overfill
• Require method to accept single node that

overfills partition+fudge factor, if node has no
children and partition is empty

• Reconsider ideal partition size at beginning of
each partition
 Raise partition size if previous partitions underfilled
 Shrink partition size if exceeds projected ideal partition

size for remaining partitions by percentage
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Preliminary Performance Evaluation

• Comparison of two process map
paradigms
 Keys hashed and assigned to processors

based on hash mod NP (f)
 Assignment to processors based on result of

melding algorithm (g)
• Compare performance of

 Compress
 Reconstruct
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Preliminary Performance Evaluation

• Approximate sum of Gaussians, with
accuracy threshold 10-12

• Approximate using different degrees for
multiwavelets: k = 9, 7, 5

2.06×1062.25×1085
1.65×1054.97×1077
3.34×1042.13×1079
Tree Size# Coefficientsk
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Performance of Load Balancing
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Comparison of Algorithms
Before/After Load Balancing (1)
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Comparison of Algorithms
Before/After Load Balancing (2)
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Comparison of Algorithms
Before/After Load Balancing (3)
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Scalability as Work Grows

(For 2048 processors)
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Analysis

• Melding algorithm not scalable!
 (Working on ways to parallelize algorithm

further)
• Melding assignment outperforms hashing

assignment for k=9; performance erodes
as tree grows
 Algorithm prioritizes minimization of broken

links at expense of balance, can tweak to pick
better configuration for this machine

 Future optimizations should help reduce cost
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V. Further Work

• Planned work
 Streamline load balancing algorithms
 Develop recursive melding algorithm, in which

“assistant manager” processors assigned chunks of
tree and subset of processors

 Adapt melding algorithm to work with forests (so
assistant managers can be assigned noncontiguous
subtrees)

• If left to my own devices…
 Explore using graph partitioning algorithms to partition

melded trees
 Further refine cost function, making more sophisticated
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More on MADNESS
• URLs

 MADNESS: 
http://www.csm.ornl.gov/ccsg/html/projects/madness.html

 MADNESS code repository: 
http://code.google.com/p/m-a-d-n-e-s-s/

 SCIDAC project webpage: 
http://www.csm.ornl.gov/~hqi/scidac/

• Papers (Math)
 B. Alpert, “A class of bases in L2 for the sparse representation

of integral operators,” SIAM J. Math. Anal. 24, pp. 246–262, 1993.
 B. Alpert, G. Beylkin, D. Gines, and L. Vozovoi, “Adaptive

solution of Partial Differential Equations in multiwavelet bases,”
J. Comp Phys 182, pp. 149–190, 2002.

 G. Fann, G. Beylkin, R.J. Harrison, and K.E. Jordan, “Singular
operators in multiwavelet bases,” IBM J. Res. & Dev. 48(2), pp.
161–171, 2004.
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More on Load Balancing

• Load Balancing
 J.D. Teresco, K.D. Devine, and J.E. Flaherty, “Partitioning and

Dynamic Load Balancing for the Numerical Solution of Partial
Differential Equations,” in Numerical Solution of Partial Differential
Equations on Parallel Computers, A.M. Bruaset, P. Bjørstad, eds.
Springer-Verlag, 2006.

 K. Devine, E. Boman, R. Heaphy, B. Hendrickson, and C. Vaughan,
“Zoltan data management services for parallel dynamic
applications,” Computing in Science and Engineering 4(2), pp.
90–97, 2002.

 Cybenko, G., “Dynamic load balancing for distributed memory
multiprocessors,” J. Parallel and Distributed Computing 7, pp
279–301, 1989.

• Load Balancing in MADNESS
 R.J. Hartman-Baker, R.J. Harrison, and G.I. Fann, “Load

Distribution in MADNESS,” in preparation.
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