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Abstract

It is well known that the near-tip displacement �eld on a crack surface can be represented
in a power series in the variable

p
r, where r is the distance to the tip. It is shown

herein that the coe�cients of the linear terms on the two sides of the crack are equal.
Equivalently, the linear term in the crack opening displacement vanishes. The proof is
a completely general argument, valid for an arbitrary (e.g., multiple, non-planar) crack
con�guration and applied boundary conditions. Moreover, the argument holds for other
equations, such as Laplace. A limit procedure for calculating the surface stress, in the
form of a hypersingular boundary integral equation, is employed to enforce the boundary
conditions along the crack faces. Evaluation of the �nite surface stress and examination
of potentially singular terms lead to the result. Inclusion of this constraint in numerical
calculations should result in a more accurate approximation of the displacement and stress
�elds in the tip region, and thus a more accurate evaluation of stress intensity factors.

Key words. Fracture mechanics, stress intensity factors, crack tip interpolation, hyper-
singular boundary integrals, eigenfunction expansion.
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1 Introduction

In the numerical modeling of fracture, a correct representation of the local stress and
displacement �elds in the crack tip region is essential for accurate evaluation of stress
intensity factors (SIFs). The determination of these quantities is a primary objective of
computational fracture mechanics, as they are important for the study of crack stability
and propagation [42]. It is therefore not surprising that the analytic form of these singu-
lar �elds and the associated numerical interpolation methods have received considerable
attention.

For two-dimensional linear elasticity, Williams derived the form of the displacement and
stress �elds in the vicinity of a corner [57] and subsequently the limiting case of a crack
tip [58]. For recent work on corner expansions, see [9] and references therein. For a crack
geometry, Williams' result for the displacement u = fukg, k = 1; 2, in the neighborhood
of the tip is

uk(r; �) = ak + bk(�)r
1

2 + ck(�)r +O
�
r
3

2

�
; (1)

where, as illustrated by Fig. 1, r is the distance to the crack tip, and � indicates a
direction emanating from the tip. In this �gure, the mathematical crack results when
the interior angle occupied by the material is 2�, i.e., � = �, and the crack surfaces
correspond to � = � �. In both �nite and boundary element formulations, attention
has appropriately focused on capturing the

p
r behavior (and the corresponding 1=

p
r

singularity in the stress �eld) in the approximation. The development of the `quarter
point' element [5, 30] superseded earlier work in this area (e.g., [55]), and this is now the
dominant technique employed. It is well established that use of special elements at the
crack tip signi�cantly improves the accuracy of stress intensity factor calculations [3, 8, 37,
49], and many re�nements and extensions of the original quarter point element technique
have been developed [32, 36] (see also the extensive list of references in [3]). Note
that for boundary integral fracture analysis, using either an approach which combines the
displacement and traction boundary integral equations [22, 27, 31], or the Displacement
Discontinuity method [15, 16, 18, 47], only the displacement on the crack surfaces,
� = ��, is approximated in the calculation. The near-tip crack surface interpolation of
the displacement is therefore crucial for accurate SIF calculations using these methods.

The purpose of this paper is to establish a relationship between the displacement functions
on the top (� = �) and bottom (� = ��) of the crack. Speci�cally, it will be shown that
the coe�cients of the linear terms in Eq. (1) are related by

ck(�) = ck(��) : (2)

Note that this equation simply states that there is no linear term present in the expansion
of the crack opening displacements, �u(r) = u(r; �) � u(r;��). Thus, incorporating
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Figure 1: De�nition of the coordinate systems (x1; x2) and (r; �) for a notch or crack
geometry. The shaded portion represents the interior of the domain.

Eq. (2) into a computational algorithm should be an especially easy task within the
Displacement Discontinuity method [15, 47] or the recent combination of the hypersingular
equation method with a Symmetric-Galerkin approximation [24]. In both approaches,
�u(r) is dealt with directly.

Given the importance and interest in fracture mechanics, it is somewhat surprising that
this simple analytical result, Eq. (2), should go unobserved for so long. The proof
is based upon the boundary integral formulation for elasticity and the evaluation of the
limiting value of the surface stress as the crack tip is approached. A direct computation of
the hypersingular integrals, the onerous calculations enormously simpli�ed by employing
symbolic manipulation, reveals a logarithmic singularity which only vanishes if Eq. (2)
holds. Before describing this method, it is useful to demonstrate that the result also follows
quite simply from Williams' eigenfunction expansion [57] (Section 2). We emphasize
however that the eigenfunction analysis is restricted to a traction free 
at crack in
an in�nite plate, whereas the boundary integral derivation (Section 3) makes it clear
that Eq. (2) holds for an arbitrary crack geometry and any two dimensional problem
(e.g., potential theory, elastodynamics) for which a boundary integral equation can be
constructed. The only assumption in this argument is that the displacement can be
represented by Eq. (1). The simplifying assumptions in the eigenfunction expansion do
yield more detailed information, speci�cally c2(�) = c2(��) = 0. Crack geometries are of
considerable interest in potential theory, and thus Section 3 begins with an analysis of the
simpler case of crack tip integrals for the Laplace equation. Not surprisingly, the analysis
and results for potential and elasticity theory follow along the same lines. In Section 4, the
validity of Eq. (2) is examined for several crack problems having known exact solutions.
Section 5 contains some concluding remarks, and a listing of the symbolic integration
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codes is included in an appendix.

The appearance of the condition in Eq. (2) and its derivation from a boundary integral
formulation are not unexpected. The interpolation constraint and the method of analysis
are natural extensions, to the limiting case of a crack, of previous work dealing with corner
geometries [25, 26] (see also [45, 46]). In particular, the limit to the boundary process
used below to enforce the traction boundary conditions on the crack faces is essentially
the same as employed in [25]. In the gradient boundary integral equation for a corner
geometry, both integrals, e.g. potential (resp. displacement) multiplying the hypersingular
kernel and 
ux (traction) multiplying the singular kernel in potential (elasticity) theory,
contribute logarithmic terms as the interior point approaches the corner. When the corner
collapses to a crack, the logarithmic singularity only arises from the hypersingular integral.
Moreover, the integrals over the two sides of the crack tip di�er by at most a sign, due to
the reversal of orientation, and thus unlike the corner problem, there is only one surface
integration to contend with.

2 Eigenfunction Expansion Method

This section presents a proof of the constraint Eq. (2) for two-dimensional elasticity, based
upon the eigenfunction method. This method is especially suitable for representing the
elastostatic singularity in a corner region (see Fig. 1), and has strong theoretical support.
In particular, Gregory [28] has proven that the Williams' eigenfunctions are complete for
the annular sector, an issue of both computational and analytical importance. A general
theory of boundary value problems for elliptic equations in domains with angular/conical
points has been presented by Kondrat'ev [35]. The present analysis utilizes the real
variables theory and follows the general framework presented by Williams [57]. The elegant
complex variable formalism of Muskhelishvili [40] is also applicable (e.g., [19, 33, 56]),
but this technique does not extend directly to three dimensions, and therefore has not
been employed.

For the sake of clarity and completeness, a detailed analysis is presented. The general
solution of the eigenproblem, commonly presented in the literature, is not valid for the
eigenvalues � = 0 and � = �1 [53, 56], and for the purposes of this paper, it is the
case � = 1 which is of primary interest. Some authors regard � = 1 as a trivial case
representing rigid body motion (rotations) [1, page 27], [34, page 416], however, such is
not the case for a crack situation (� = � in Fig. 1). Thus, the eigenfunctions associated
with � = 1 are of importance for analyzing the near crack tip �elds.
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Stress analysis

Let � be the Airy stress function (e.g. [21, 40]) in polar coordinates (r; �). In the
absence of body forces, the elasticity equations are satis�ed if the stresses are derived
from � according to

�rr(r; �) =
1

r

@�

@r
+

1

r2
@2�

@�2

���(r; �) =
@2�

@r2

�r�(r; �) = � @

@r

 
1

r

@�

@�

!
=

1

r2
@�

@�
� 1

r

@2�

@r@�
; (3)

and � satis�es the biharmonic equation r2(r2�) = 0. As usualr2 denotes the Laplacian

r2 =
@2

@r2
+

1

r

@

@r
+

1

r2
@2

@�2
: (4)

For the reentrant corner con�guration shown in Fig. 1, the Airy stress function can be
taken as

� = �(r; �) = r�+1F (�) ; (5)

and substitution of Eq. (5) into the biharmonic equation yields (the primes denoting
di�erentiation with respect to �)

F 0000(�) + 2(�2 + 1)F 00(�) + (� � 1)2(�+ 1)2F (�) = 0 : (6)

The general solution of this di�erential equation is, for � 6= f0; 1;�1g,
F (�) = C1 sin(�+ 1)� + C2 cos(�+ 1)� + C3 sin(�� 1)� + C4 cos(�� 1)� : (7)

The solutions for the special cases are

F (�) = C1 sin � + C2� sin � + C3 cos � + C4� cos � for � = 0 ; (8)

F (�) = C1 + C2� + C3 sin 2� + C4 cos 2� for � = �1 : (9)

From Eqs. (3) and (5) we arrive at the desired form for the stress,

�rr = r��1 [F 00(�) + (�+ 1)F (�)]

��� = r��1 [�(� + 1)F (�)]

�r� = r��1 [��F 0(�)] : (10)

In general, the eigenvalues � and the coe�cients Ci (1 � i � 4) are complex, and they
are determined so that the boundary conditions on the faces of the corner are satis�ed.
In this section, we are interested in traction free boundary conditions on the notch faces.
Eigen-equations for other boundary conditions for corner geometries (clamped-clamped,
clamped-free and free-free) have been investigated by Williams [57].
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Eigenvalues

The traction free boundary conditions on the notch faces (Fig. 1) are ���(r;��) = 0 and
�r�(r;��) = 0, and thus from Eqs. (10) it follows that F (��) = F 0(��) = 0. Applying
these conditions to the general solution for F , Eq. (7), results in a linear system of four
equations in four unknowns which is easily seen to be equivalent to a pair of uncoupled
systems, "

cos(� + 1)� cos(�� 1)�
(� + 1) sin(� + 1)� (� � 1) sin(�� 1)�

#(
C2

C4

)
=

(
0
0

)
(11)

and "
sin(� + 1)� sin(�� 1)�

(�+ 1) cos(� + 1)� (�� 1) cos(�� 1)�

#(
C1

C3

)
=

(
0
0

)
: (12)

A non-trivial solution exists if the corresponding determinants vanish. After simpli�cation,
the resulting characteristic equations for the systems (11) and (12) are

� sin 2� + sin 2�� = 0 (13)

� sin 2� � sin 2�� = 0 ; (14)

where the eigen-equation (13) is associated with the symmetric part of the solution (open-
ing mode or mode I), the eigen-equation (14) is associated with the anti-symmetric part
(sliding mode or mode II), and the terminology for modes I and II has been borrowed
from the fracture mechanics literature. If � is a solution of either Eq. (13) or Eq. (14),
then �� is also a solution. However, the corresponding stress �eld has �nite strain energy
only if <f�g > 0 (<f�g denotes the real part of the argument), and thus only solutions
satisfying this inequality need to be considered.

For a crack, � = �, and Eqs. (13) or (14) simplify to

sin 2��I = sin 2��II = 0 (15)

where �I and �II refer to the mode I and mode II eigenvalues, respectively. The solution
of Eq. (15) is

�In = �IIn = �n =
n

2
; n = 0; 1; 2; 3; � � � ; (16)

where �n denotes the n-th eigenvalue. As noted above, the cases � = 0; 1 (or n = 0; 2)
are treated separately. In general, the eigenvalues �In and �IIn cannot be obtained in a
simple form as in Eq. (16). A detailed investigation of the behavior of the roots of the
characteristic equations (13) and (14) has been presented by R�osel [44] and Vasilopou-
los [56].
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Displacements

To establish Eq. (2), it is necessary to derive the form of the displacements at the
crack tip. The polar displacement components (ur; u�) in the radial and circumferential
directions (see Fig. 1) can be expressed as

ur =
1

2�

"
�@�

@r
+ (1� &)r

@	

@�

#

u� =
1

2�

"
�1

r

@�

@�
+ (1 � &)r2

@	

@r

#
; (17)

respectively, where � is the shear modulus, & � � for plane strain, & � �=(1 + �) for
plane stress, and � is the Poisson's ratio. The function 	 satis�es the Laplace equation
r2	 = 0 and, in addition, is related to the biharmonic function � by [14, pages 166-168]

r2� =
@

@r

 
r
@	

@�

!
: (18)

Applying the eigen-analysis to 	,

	 = 	(r; �) = rmG(�) ; (19)

and substituting this into the Laplace equation it is seen that G(�) satis�es the di�erential
equation

m2G(�) +G00(�) = 0 ; (20)

and is therefore of the form

G(�) = A1 cosm� +A2 sinm� ; (21)

where m is, in general, complex. Moreover, Eq. (18) provides a connection between the
expressions for G and F (Eq. (7)), and equating the powers of r and like trigonometric
terms yields

� = m+ 1 ; A1 = � 4

�� 1
C3 and A2 =

4

� � 1
C4 : (22)

Substitution of these results into Eq. (21) leads to

G(�) =
4

�� 1
[�C3 cos(� � 1)� + C4 sin(�� 1)�] ; (23)

and �nally, combining Eqs. (5), (19) and Eqs. (17) yields the displacement components

2�ur = r� [�(�+ 1)F (�) + (1� &)G0(�)]

2�u� = r� [�F 0(�) + (1� &)(�� 1)G(�)] : (24)
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Remarks

The eigenequations (13) and (14) have been derived from Eq. (7), which is not valid for
� = 0; � 1. As noted previously, these eigenvalues must be treated separately. The case
� = �1 is not physically meaningful, while it follows from Eq. (9) that � = 0 represents
the trivial case for which all the stresses are zero and the displacements are rigid body
translations.

It is interesting to note that the coe�cients of the square root term, uk = bk
p
r; k = 1; 2,

on the top and bottom of the crack surfaces are related by

bk(�) = �bk(��) : (25)

This follows from the general form of the displacement with � = �1 = 1=2, Eq. (24),
and is a consequence of the symmetry of the domain and boundary conditions. The case
� = 1 is directly related to the proposed constraint (Eq. (2)) and will now be investigated
in detail.

Linear Mode

When � = 1, the Airy stress function, Eq. (5), becomes

� = r2F (�) ; (26)

where F (�) is given by Eq. (9). Also, m = 0 and thus the form of the harmonic function
G(�) is simply

	 = G(�) = A1 +A2� (27)

and from Eq. (18),
A2 = 4C1 and C2 = 0 : (28)

Substitution of Eqs. (26), (9) and (28) in Eqs. (3) leads to the stress �eld

�rr = 2C1

��� = 2 (C1 + C3 sin 2� + C4 cos 2�)

�r� = �2 (C3 cos 2� � C4 sin 2�) : (29)

from which the traction free boundary conditions give

C1 + C4 cos 2� = 0 C3 sin 2� = 0
C3 cos 2� = 0 C4 sin 2� = 0 :

(30)
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Thus, C3 = 0 and specializing these results for a crack (� = �), C1 = �C4. Substituting
these results for the Ci's and Eqs. (26) and (27) into Eqs. (17), one obtains the polar
displacement components

ur = �r 1

2�
C4 (�� 1 + 2 cos 2�)

u� = r
1

�
C4 sin 2� ; (31)

where � � 3 � 4&. By Eqs. (31) these represent mode I displacements. In Cartesian
coordinates, these displacement components are

u1 = �r 1

2�
C4 (�+ 1) cos �

u2 = �r 1

2�
C4 (�� 3) sin � : (32)

These equations are of the form uk = ckr, k = 1; 2, and it is readily seen that the
coe�cients on the top (� = �) and bottom (� = ��) of the crack surfaces are

c1(�) = c1(��) = 1

2�
C4(�+ 1)

c2(�) = c2(��) = 0 : (33)

Therefore, the proposed constraint on the crack faces, Eq. (2), is in agreement with the
results by the eigenfunction expansion, Eqs. (33).

3 Boundary Integral Analysis

The proof of Eq. (2) which follows relies on direct evaluation of the crack tip integral in
the hypersingular boundary integral equation for the surface derivatives. Note that the
symmetry arguments, which underlie Williams' asymptotic expansion of the stress [20,
Eq. (2)], is not required for this analysis. The singular integrals are de�ned in terms of
a limit process which is consistent with the physics of the problem, namely that the limit
to the crack tip be taken along the crack surface (see Fig. 2). Whereas the boundary
conditions demand that this value remains �nite as the boundary point approaches the
tip, the calculation produces a logarithmic singularity. This singularity only vanishes if Eq.
(2) holds.
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The limit analysis presented herein is similar to the work by Cruse [17] in establishing the
form of the stress �eld ahead of the crack. His calculations evaluated the stress in the
interior of the domain, at a point ahead of and approaching the tip. As indicated above,
the limit process employed below also involves evaluating the stress near the tip, but now
on the crack surface.

As indicated in the introduction, this argument is not restricted to elasticity. The simplest
formulation (and integrations) are for the two-dimensional Laplace equation r2� = 0,
for which the potential � and its normal derivative play the role of the displacement and
traction in elasticity. The boundary integral proof will therefore be presented �rst in this
simpler setting, and then for the linear theory of elasticity, i.e., linear elastic fracture
mechanics.

In what follows, it is assumed that the potential or displacement on the crack surface
follows Williams' result, Eq. (1), for an isolated traction free crack in an in�nite medium.
Speci�cally, the near tip behavior will be represented by the expansion

uk(r;� �) = ak + bk(� �)r
1

2 + ck(� �)r +O
�
r
3

2

�
: (34)

For our purposes, it is important that � = 1=2 be the only exponent in this series in the
interval 0 < � < 1. This is in fact the basis for employing stress intensity factors as
characterizing parameters for fracture analysis.

3.1 Potential Theory

Aside from simplicity, there is another important reason for examining the Laplace equa-
tion. While probably not studied as extensively as linear elastic fracture mechanics, crack
problems in potential theory are nevertheless of considerable interest [2]. Speci�c applica-
tions are in electroplating [12, 22], wherein the crack is generally thin insulated shielding,
and in groundwater 
ow models containing either fractures [39, 48] or thin impermeable
layers [52]. Moreover, the anti-plane shear crack problem in a linearly elastic solid is also
governed by the (two dimensional) Laplacian operator (see, for example, [41]).

The boundary integral equation for two-dimensional potential theory can be written as
[25]

�(P ) +
Z
@B

�(Q)
@G

@n
(P;Q) dQ =

Z
@B

G(P;Q)
@�

@n
dQ ; (35)

where � is the potential, n is the unit outward normal on the boundary @B, and @(�)=@n
denotes the normal derivative with respect to Q. The fundamental solution or Green's
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function will be taken as the point source potential,

G(P;Q) = � 1

2�
log kQ� Pk : (36)

Note that Eq. (35) holds for a point P 2 B interior to the domain, and, de�ning the
singular integrals (which arise when P = Q) in terms of a limit to the boundary [22],
also for P 2 @B [38].

Di�erentiating Eq. (35) with respect to P in the direction N = n(P ) results in a
corresponding equation for surface 
ux,

@�

@N
(P ) +

Z
@B

�(Q)
@2G

@N@n
(P;Q) dQ =

Z
@B

@G

@N
(P;Q)

@�

@n
(Q) dQ : (37)

Once again, this equation is valid for P 2 @B by de�ning the singular integrals as a limit
from the interior of the domain [22]. The explicit form of the kernel functions is

@G

@N
(P;Q) =

1

2�

N�R

r2

@2G

@N@n
(P;Q) =

1

2�

 
n�N

r2
� 2

(n�R)(N�R)

r4

!
; (38)

where r = kRk = kQ� Pk2.

P

x2

P
0

*

δ
ε

1x

x-a

Figure 2: Illustration of the double limit process.

The equation for surface 
ux, Eq. (37), will be employed to enforce the 
ux boundary
conditions along the crack faces. As illustrated in Fig. 2, this calculation is carried out

10



by means of a double limiting procedure. The crack lies along the negative x1-axis, and
the 
ux is calculated at an interior point P �,

P � = "(�1; 0) + �(0; 1) : (39)

The limits � ! 0 and "! 0 are then considered, in this order. Thus, P � �rst approaches
the crack surface (y = 0+) a small distance " from the tip, and then the limit " ! 0
is considered. Since the 
ux is �nite on the crack surface (the usual boundary condition
is zero 
ux), this limit procedure must produce a �nite value. In the derivation, only
potentially singular terms will be of interest. As shown below, the limiting value 
ux
integral on the right hand side in Eq. (37) is well behaved, and thus this integral can be
ignored. Similarly, the hypersingular integral only contributes potentially singular terms
for the integration over the crack tip region, the remainder of the boundary producing a
�nite value as P � ! P0. Moreover, from Eq. (34), it also su�ces to consider the �rst
three terms in an expansion for � on the crack surface,

� = a+ b
p
r + cr : (40)

For a 
at crack, the evaluation of the corresponding three integrals over the crack tip can
be carried out analytically. This is most easily accomplished using a symbolic manipulation
program such as Maple [13]. The Maple scripts for the integrations discussed below are
listed in the Appendix.

Although the use of these analytical integrations appears to limit the argument to a 
at
crack, it should be emphasized that Eq. (2) nevertheless remains valid for any smooth
curved crack. A simple heuristic justi�cation of this statement is that the proof relies solely
on integrals over an arbitrarily small crack tip region, and any smooth surface is locally

at. A rigorous argument can be based upon the techniques presented in [23], which
demonstrate that the di�erence between integrating (hyper)singular boundary integrals
over 
at and curved surfaces is a completely regular integral (see also [24]). Once again,
only potentially singular contributions are of interest, and thus there is no loss of generality
in restricting consideration to a 
at crack.

It is assumed that, as shown in Fig. 2, the domain of integration (crack tip element) is
[�ax; 0], ax > 0, parameterized as Q(x) = (axx; 0) ; �1 � x � 0. The crack tip is
P0 = (0; 0). The interior point P in Eq. (37) is taken as P � = (�"; �). After the integral
is evaluated, the limit to the crack surface, � ! 0, is computed, and then the approach
to the crack tip, "! 0 is considered. As noted above, this procedure is easily carried out
using symbolic computation. Note that the integrations over the top y = 0+ and bottom
y = 0� of the crack only di�er by a sign, and thus it is su�cient to integrate over the
top surface. From Eq. (38), and with n = N = (0; 1) on the top crack surface y = 0+,
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the integrals to be computed in Eq. (37) are

lim
"!0

lim
�!0

�
� 1

2�

�Z
0

�1

�
a+ b

p
x+ cx

� 2ax�2 � ax
�
(axx+ ")2 + �2

�
�
(axx+ ")2 + �2

�2 dx ;

lim
"!0

lim
�!0

� 1

2�

Z
0

�1

�ax�
(axx+ ")2 + �2

dx : (41)

Note that in the expansion for @�=@n in the second integral above, only the constant
term has been considered, as this is the only term that can contribute potentially singular
terms in the limit process. The three terms involving the coe�cients fa; b; cg in the �rst
integral, and the second integral in Eq. (41), are considered separately below.

Constant: � = a

The integral over one side of the crack surface evaluates as

� a

2�

�
1

"
+

1

ax

�
: (42)

The coe�cient a is the same on both sides, and thus the singular "�1 term cancels (as
does the �nite contribution) with the integration over the second side. Note that this
term is not present in a displacement discontinuity approach [15], and thus the canceling
of this contribution is entirely reasonable.

Square Root: � = b
p
x

The integration of the square root term in Eq. (41) is more involved and results in
signi�cantly longer and more complicated expressions. Moreover, it is not immediately
possible, as with the constant and linear terms, to set � = 0. As indicated by the Maple
coding in the Appendix, this limit process is partly simpli�ed by means of the Taylor
expansion at � = 0 (note that � goes to zero before ")

p
"2 + �2 = "+

�2

2"
+O

�
�4
�
: (43)

Applying this expansion to the integration of the square root term results in

� b

2�

"
1

ax
+

1

4
p
ax"

log (ax + 2
p
ax"+ ")

� 1

4
p
ax"

log (ax � 2
p
ax"+ ")

#
: (44)
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The logarithmic terms, apparently singular in the " = 0 limit, can however be rewritten
as

� b

8�
p
ax"

log

 
1 + q

1� q

!
; q =

2
p
ax"

ax + "
; (45)

and employing the Taylor expansion at q = 0,

log

 
1 + q

1 � q

!
= 2q +O

�
q3
�
; (46)

now shows that this term is well behaved. Thus, no singular terms arise from the
p
x

term, and the result of the limit procedure is

� b

�ax
: (47)

x2

εP
0 x1

P*

x-a

Figure 3: Limit process for determining the amplitude of the singular �eld.

As a �nal comment, it is worth noting that the 
ux as P � approaches the tip from the
interior of the domain, i.e., not along the crack surface (see Fig. 3), is, as expected,
singular. Taking P � = ("; 0) and evaluating the hypersingular integral, one obtains

�b+ � b�

2�

2
64 1

ax + "
�

tan�1
�q

ax="
�

p
ax"

3
75!�b+ � b�

2�

"
1

ax
� �

2
p
ax"

#
; (48)

which gives the expected 1=
p
" singularity. This particular limit process (Fig. 3) o�ers the

possibility of deriving an e�ective general method for computing stress intensity factors
in the context of linear elastic fracture mechanics. This technique is currently under
investigation.
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Linear: � = cx

The announced result, Eq. (2), follows from an examination of the integrals for this linear
term. Direct evaluation yields

� c

2�

 
� log("2)

2ax
+

log(a2x)� 2

2ax

!
: (49)

Thus, the integration over both sides of the crack produces a singular term of the form

�
�
c+ � c�

� log( j " j )
2�ax

; (50)

where c+ and c� denote the linear coe�cients on the two sides. As there are no other
singular terms which come out of evaluating the 
ux at the crack tip, the only way to
cancel the singularity in Eq. (50) is to have c+ = c�.

Flux Integral

The most common boundary condition on a crack surface is zero 
ux (zero traction in the
case of elasticity). The `
ux integral' in the hypersingular equation (37) will therefore not
contribute to the evaluation of the 
ux at the tip. However, in some applications (e.g.,
pressurized crack) this boundary condition will not be zero, and it is therefore necessary
to check whether any singular terms arise from this integration. This is not the case, as is
easily seen from examining the lowest order term, @�=@n = �0, where �0 is a constant.
Evaluating this integral yields

��0

2�

�

j�j
�
tan�1

�
"

�

�
+ tan�1

�
ax � "

�

��
: (51)

In the limit � ! 0, the tan�1 terms become �=2, and thus, as expected, this expression
reduces to the usual `interior angle' coe�cient 1=2 for a smooth surface.

3.2 Elasticity Theory

The boundary integral proof for elasticity mostly follows along the above lines, and thus
only a brief description of the formulation and the results will be given. As will be
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discussed below, the main di�erence involves the square root term. The Maple codes for
the elasticity integrations are also listed in the Appendix.

The boundary integral equation for two-dimensional elasticity is given by [16, 43]

uk(P ) +
Z
@B

Tkj(P;Q)uj(Q) dQ =
Z
@B

Ukj(P;Q)�j(Q) dQ ; (52)

where u and � denote displacement and traction, respectively. As customary, the kernel
functions Tkj(P;Q) and Ukj(P;Q) are given by the Kelvin solution for a point load in
an in�nite medium. Equation (52) holds for a point P 2 B interior to the domain, and,
de�ning the singular integrals in terms of a limit to the boundary [38], also for P 2 @B.
A corresponding equation for the stress can be obtained by di�erentiating Eq. (52) with
respect to P [27], resulting in

�lk(P ) +
Z
@B

Slkm(P;Q)um(Q) dQ =
Z
@B

Dlkm(P;Q)�m(Q) dQ : (53)

Once again, this equation is valid for P 2 @B by de�ning the singular integrals as a limit
from the interior of the domain. The new kernels Dlkm(P;Q) (singular) and Slkm(P;Q)
(hypersingular) are given by ([10], Eqs. (5.69) and (5.70))

Dlkm =
1

4�(1� �)r
[(1 � 2�) f�lmr;k + �kmr;l � �lkr;mg+ 2r;lr;kr;m]

Slkm =
�

2�(1� �)r2

"
2
@r

@n
(f1� 2�g �lkr;m + � (�kmr;l + �lmr;k) � 4r;lr;kr;m)

+(1� 2�) (2nmr;lr;k + nk�lm + nl�km)

+2� (nlr;kr;m + nkr;lr;m)� (1� 4�)nm�lk

�
; (54)

where � is Poisson's ratio, � is shear modulus, �ij is the Kronecker delta, r;i = @r=@qi, and
qi is the ith coordinate of the �eld point Q. As in potential theory, there is no contribution,
singular or otherwise, from the constant term u = u(P0) in the hypersingular displacement
integral. This value is the same on both sides of the crack, and the singular integrals are
continuous crossing the boundary. Thus, the opposite orientation of the two crack tip
elements ensures that the two integrals cancel, and it su�ces to examine the square root
and linear coe�cient terms. For the traction integral, once again only the constant term
is of interest. The integrals to be computed are therefore

lim
"!0

lim
�!0

Z
0

�1

�
bm
p
x+ cmx

�
Slkm (P �; Q(x)) dx

lim
"!0

lim
�!0

Z
0

�1

Dlkm (P �; Q(x)) dx : (55)
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Square Root: uk = bk
p
r

The analysis of this term di�ers from that in potential theory in that the Taylor expansion,
Eq. (43), must include an additional term,

p
"2 + �2 = "

 
1 +

�2

2"2
� �4

8"4

!
+O

�
�6
�
: (56)

Fortunately, all of the lengthy algebra which results is easily handled via symbolic compu-
tation. For N = (0; 1), the traction vector on the crack surface is � = (�12; �22) and the
calculation yields the simple result

� = � �

2�(1� �)
ax

 
b1
b2

!
: (57)

Thus, as in potential theory, elasticity does not impose any relationship between the
coe�cients b+ and b�.

Linear: uk = ckr

The potentially singular terms which arise in the evaluation of the crack tip limits are

�1 = �12 =
�

�(1� �)ax

�
c+1 � c�1

�
log( " )

�2 = �22 =
�

�(1� �)ax

�
c+
2
� c�

2

�
log( " ) ; (58)

and a �nite value at the tip therefore requires that Eq. (2) be satis�ed.

Traction Integral

Pressurized crack problems are of interest in various applications, such as pressure induced
fractures in oil and gas reservoirs [51], and thus the e�ect of a non-zero boundary condition
on the crack will now be investigated (see Fig. 4). England [19] has veri�ed that the crack
tip stress singularity for a pressurized crack (�nite straight crack in an in�nite medium)
remains r�1=2. Thus, in this case, the form of the displacement remains as in Eq. (1).

Evaluation of the constant term in the traction integral yields

�12 =
1

4�(1� �)

"
1

2

log(")

ax
� � log(")

ax
� 1

2

log(a2x)

ax
+
� log(a2x)

ax

#
�2
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Figure 4: Loaded crack.

�22 =
1

4�(1� �)

"
�1

2

log(")

ax
+
� log(")

ax
+

1

2

log(a2x)

ax
� � log(a2x)

ax

#
�1 ; (59)

where �+

1 = ��1 = �1 and �+

2 = ��2 = �2 are constants. Cancelation of the potentially
singular terms results from adding the contributions from the two sides of the crack.

4 Exact Solutions

In this section we examine several known exact solutions, from the well known compilation
of crack problems by Tada et al. [54], and verify that they satisfy Eq. (2). The motivation
for doing this veri�cation is that the general boundary integral proof presented above
depends upon the assumption that Eq. (1) is valid. It will be demonstrated that Eq. (2)
does in fact hold for a variety of crack geometries and boundary conditions. Moreover, the
form of the crack opening �u varies signi�cantly, and thus these examples lend credence
to the belief that Eqs. (1) and (2) are indeed valid. Nevertheless, keep in mind that since
exact solutions exist, all of the problems are necessarily relatively `simple' (e.g., 
at cracks
and generally possessing some type of symmetry). In particular, see the comment below
concerning the coe�cient of the r2 term.

Four example problems will be considered, and they will be identi�ed by the numbering
scheme employed in reference [54]. Only the �rst example is discussed in detail, as
the analysis for the remaining three examples follows along the same lines. Again, the
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required computations, in this case evaluating the second derivative of some complicated
functions, are easily accomplished by means of symbolic manipulation. The Maple scripts
are included in the appendix, Section 6.3.

4.1 Eccentric Load on the Crack Faces

x

x 2

1
b

P

P

-ax xa

Figure 5: Example 5:10a from Tada et al. [53].

Figure 5 shows an in�nite plate containing a straight crack (�ax � x1 � ax) with
eccentric point loads (P ) on its faces at (b; 0+) and (b; 0�). Note that this example
demonstrates that Eq. (2) holds even for a point load arbitrarily close to the tip. The
crack opening displacement is given by

�u2(x1; 0) =
4P

�E�
cosh�1

 
a2x � b x1
axjx1 � bj

!
; (60)

where E� � E=(1� �)2 for plane strain and E� � E for plane stress.

To compute the coe�cient of the linear term in the expansion at the crack tip x1 = ax
we �rst make the substitution r = ax � x1, r being the distance to the crack tip, and
since the leading term is

p
r, we further substitute s2 = r. The desired coe�cient of the

linear term in r is therefore the coe�cient of s2 in the Taylor expansion about s = 0 for
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the function

f(s) =
4P

�E�
cosh�1

 
1 + � s2

1� � s2

!
; (61)

where � = 1=(ax� b) and � = b �=ax, and this coe�cient is easily computed as f 00(0)=2.
As indicated by the Maple code in the appendix, f 00(s) is written in the form A(s)=B(s),
and employing Taylor expansions for both numerator and denominator yields

f 00(s) � �16P

�E�

(�2 � 4� �� 5�2 ) s

( 3� s2 + 4� 11� s2 )
p
2� + 2�

(62)

and as desired, f 00(0) = 0. Moreover, evaluation of the leading terms shows that

�u2(r) =
4P

�E�

0
@
p
2p
ax

q
a2x � b2

ax � b
r1=2

+ 2
5�4 + 14��3 + 12�2�2 + 2�3� � �4

3(2� + 2�)5=2
r3=2 +O

�
r
5

2

�!
; (63)

and as the mode I stress intensity factor KI is
p
�E�=4

p
2 times the coe�cient of r1=2

(see Appendix B in [54]), KI (ax) = (P=
p
�ax)

q
a2x � b2 = (ax� b) : This agrees with the

result reported in [54]. Note too that, as is the case for all four examples, the coe�cient
of r2 is also zero.

The analysis for the crack tip at x1 = �ax proceeds in much the same fashion, only now
r = ax + x1, and

f(s) =
4P

�E�
cosh�1

 
1� �� s2

1 � �� s2

!
; (64)

�� = 1=(ax + b) and �� = b ��=ax. Finally, note that an arbitrary traction boundary
condition on the crack surface can be represented as a continuous distribution of point
sources, and thus the r coe�cient should be zero in this case as well. This can be directly
observed from the exact solution obtained by Sneddon and Elliott [50].

4.2 Strip with Edge Cracks Remotely Loaded

Figure 6 shows an in�nite strip (width = W ) with edge cracks subjected to remote tension
loading (�1). Note that, due to the boundary conditions, the crack opening displacement
for the crack on the left (�u2(x1; 0); 0 � x1 � ax) is the same as the crack opening
displacement for the right-half part of a central crack of length 2ax in an in�nite strip
subjected to the same remote loading [54]. As the parameters ax and W are arbitrary,
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Figure 6: Example 7:1a from Tada et al. [53].

this problem provides a surface crack example where the crack tip is close to the outer
boundary, and/or close to another crack. The crack opening displacement is

�u2(x1; 0) =
4�1W

�E�
cosh�1

 
cos (� x1=W )

cos (� ax=W )

!
; (65)

and the symbolic code in the appendix shows that the coe�cient of the linear term of the
Taylor expansion of this function at x1 = ax is zero.

4.3 Strip with Central Crack and Concentric Loads

Figure 7 shows an in�nite strip (width = W ) containing a straight crack (�ax � x1 � ax)
with concentric point loads (P ) located at x2 = �y0. Again, of primary interest is that
the parameters fax; W ; y0g are arbitrary, and thus for ax � W=2, the crack tips strongly
interact with the outer boundary. The crack opening displacement is

�u2(x1; 0) =
4P

�E�

 
1� �y0

@

@y0

!

tanh�1

0
B@
"
1 � (cos ( ax �=W )/ cos (� x1=W ))2

1� (cos ( ax �=W )/ cosh (� y0=W ))2

# 1

2

1
CA (66)

20



x1

x2

w / 2 w / 2P

P

ax-ax

0

0

y

y

Figure 7: Example 7:4a from Tada et al. [53].

and, again, the symbolic code in the appendix shows that the coe�cient of the linear term
of the Taylor expansion of this function at x1 = ax is zero. By symmetry, the results for
the expansions at x1 = ax and x1 = �ax are the same.

4.4 Parallel Cracks Remotely Loaded in Anti-Plane Shear

Figure 8 shows an in�nite plate containing parallel straight cracks (�ax � x1 � ax)
separated by the distance H and subjected to remote anti-plane shear loading (�32).
In addition to providing an example involving multiple interacting cracks, this problem
involves the tearing rather than the opening mode. The crack tearing displacement is

�u3(x; 0) =
�32H

G�
cos�1

 
cosh(� x1=H )

cosh(� ax=H )

!
(67)

and the same methods employed above show that the coe�cient of the linear term of the
Taylor expansion of this function at x1 = ax does vanish (see the Maple code in 6.3). By
symmetry, the results for the expansions at x1 = ax and x1 = �ax are the same.
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Figure 8: Example 14:1a from Tada et al. [53.

5 Conclusions

For two dimensional problems, a relationship, Eq. (2), between the expansions of the
primary variable (potential or displacement) on the two sides of a crack tip has been
derived. In particular, it has been shown that in the expansion of the crack opening
displacement as a function of distance from the tip, there is no linear term present. For
fracture mechanics, it should be pro�table to exploit this information in either �nite or
boundary element analyses, improving the accuracy of the near tip �elds and consequently
the stress intensity factors.

While Eq. (2) follows from the eigenfunction expansion method, an argument based upon
this approach is limited to a traction free 
at crack in an in�nite plate. However, the
proof based upon a boundary integral representation shows that this result holds for an
arbitrary crack geometry (i.e., multiple, non-planar) and equations other than elasticity.
In the case of linear elastic fracture mechanics, this is associated with the concept of
crack tip autonomy (see Barenblatt [4] and Broberg [11]). This argument is based upon
examining the potentially singular terms that arise in evaluating the integral expression
for the surface stress near the crack tip. Thus, as in [25], this work illustrates that,
rather than ignoring these terms, the potentially singular contributions carry important
information and should be examined. Note that the higher order terms rn=2; n � 3, in
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the expansion for u or � yield completely regular integrals, and thus the indication is that
no other results along these lines can be expected.

The one assumption employed in the boundary integral argument is that the near tip
displacement behavior on the crack surface includes only a square root and a linear term,
Eq. (34). Note however that even if more complicated boundary conditions or geometry
(multiple, interacting cracks) should produce a term of the form r�, 0 < � < 1 (� 6= 1=2),
it is unlikely that integration of this term will contribute a logarithmic singularity (i.e.,
Eq. (58)) in the expression for the near tip traction. The argument leading to Eq. (2)
would therefore remain unaltered.

It is likely that the arguments presented here can be carried over to three dimensional crack
problems. The eigenfunction expansion method has been extended to three dimensions
by Benthem [6, 7] and Hartranft and Sih [29], and these results should be applicable. For
the more general boundary integral approach, the three-dimensional computations will
necessarily be more involved, but based upon the previous analysis of a corner geometry
[25] the extension of the limit procedure argument should be more or less straightforward.
Work in this direction is currently being pursued. This study will hopefully lead to accurate
evaluation of stress intensity factors, and also contribute to a better understanding of the
three dimensional character of the stress distribution in the neighborhood of the crack
front.
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6 Appendix

The following codes were run with Maple V, release 3. Only a few basic Maple operations,
integration and substitution, are employed, and thus it is likely that, with relatively minor
changes, these scripts would work with other symbolic computation systems. The naming
of variables follows fairly closely the notation in this paper, and it is therefore hoped that
the codes are mostly self-explanatory. However, a few comments lines, which begin with
the pound sign #, are also included. As in Section 3, the Laplace equation integrations
will be considered �rst.
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6.1 Laplace Equation

All of the calculations share a common piece of coding which set up the geometry and
the components of the Green's function. Note that the �(2�)�1 factor in Eq. (36) is
omitted.

> # geometry
> r1 := ax*x + eps;
> r2 := - del;
> rh2 := r1**2 + r2**2;
> N1 := 0;
> N2 := 1;
> n1 := 0;
> n2 := 1;
> jn1 := 0;
> jn2 := ax;
> # kernel
> jnr := jn1*r1 + jn2*r2;
> jnN := jn1*N1 + jn2*N2;
> rN := r1*N1 + r2*N2;
> num1 := -jnN;
> num2 := expand(2*jnr*rN);
> kernel := num1/rh2 + num2/rh2^2;

� Integral

The additional coding to calculate the constant and linear terms are
> t0int := int(kernel,x=-1..0);
> s0 := subs(del=0,t0int);
> s0 := subs(ax-eps=ax,s0);
> s0 := subs(ax*eps=0,s0);
> s0 := subs(eps^2=0,s0);

and

> t1 := expand(kernel*x);
> t1int := int(t1,x=-1..0);
> s1 := subs(del=0,t1int);
> s1 := subs(ax*eps=0,s1);
> s1 := subs(ax^2+eps^2=ax^2,s1);
> s1 := subs(ln(ax^2)*eps^2=0,s1);
> s1 := subs(-2*ln(ax^2)*ax*eps=0,s1);
> s1 := subs(2*eps^2=0,s1);

As might be expected, somewhat more work is involved for the square root term. To assist
Maple in computing this integral, the variable q is introduced to simplify the expressions
in the kernel denominators.
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> #
> # q = x + eps/ax
> #
> rh2 := expand(subs(x=q-eps/ax,rh2));
> #
> kernel := num1/rh2 + num2/rh2^2;
> ##
> ## Square root term sqrt(-x) -1 < x < 0
> ##
> t0 := sqrt(eps/ax-q)*kernel:
> t0int := int(t0,q):
> t1 := subs(q=eps/ax,t0int):
> t2 := - subs(q=-1+eps/ax,t0int):
> t1 := expand(t1):
> t2 := expand(t2):
> tsq := t1 + t2;
> tsq := subs(sqrt(ax^2)=ax,tsq):
> tsq := subs(1/sqrt(ax^2)=1/ax,tsq):
> # beta = sqrt(eps^2+del^2)
> tsq := subs(sqrt(ax^2*(eps^2+del^2))=ax*beta,tsq):
> tsq := subs(1/sqrt(ax^2*(eps^2+del^2))=1/(ax*beta),tsq):
> tsq := subs(sqrt(ax^2*eps^2+del^2*ax^2)=ax*beta,tsq):
> tsq := subs(sqrt(eps^2+del^2)=beta,tsq):
> tsq := subs(1/sqrt(eps^2+del^2)=1/beta,tsq):
> # Taylor expansion for beta
> tsq := subs(2*ax*beta=2*ax*eps+ax*del^2/eps,tsq):
> tsq := subs((ax*del^2/eps)^(-3/2)=
> eps^(3/2)/(adel*del^2*ax^(3/2)),tsq):
> tsq := subs(1/sqrt(ax*del^2/eps)=
> sqrt(eps)/(adel*sqrt(ax)),tsq):
> tsq := subs(4*eps*ax+ax*del^2/eps=4*eps*ax,tsq):
> tsq := subs(sqrt(eps*ax)=sqrt(ax)*sqrt(eps),tsq):
> tsq := subs(1/sqrt(eps*ax)=1/(sqrt(ax)*sqrt(eps)),tsq):
> tsq := subs(beta=eps,tsq):
> tsq := subs(del^2=0,tsq):
> tsq := subs(4^(1/2)=2,tsq):
> tsq := subs(1/(ax+2*ax^(1/2)*eps^(1/2)+eps)=1/ax,tsq):
> tsq := subs(1/(ax-2*ax^(1/2)*eps^(1/2)+eps)=1/ax,tsq);

Flux Integral

The coding for the relatively simple 
ux integral is:

> JNR := ax*(N1*r1 + N2*r2);
> i1 := - JNR/rh2;
> a0 := int(i1,x=-1..0);
> a0 := subs(1/sqrt(ax^2*del^2)=1/ax*1/adel,a0);
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6.2 Elasticity

The Maple codes for elasticity basically follow the same procedures as for the Laplace
equation. However, the code for the square root term is somewhat more complicated, as
computing the limit requires keeping additional terms in the Taylor expansions, Eq. (56).
The linear and square root calculations for the displacement integral, and the constant
term for the traction integral, all share the common piece of coding listed below.

> rc := array(1..2);
> n := array(1..2);
> a := array(1..2);
> b := array(1..2);
> c := array(1..2);
> sigma := array(1..2,1..2);
> drdx := array(1..2);
> p := array(1..2,1..2,1..2);
> s := array(1..2,1..2,1..2);
> d := array(1..2,1..2);
> #
> ay := 0;
> d[1,1] := 1;
> d[1,2] := 0;
> d[2,1] := 0;
> d[2,2] := 1;
> #
> rc[1] := x*ax + eps;
> rc[2] := x*ay - del;
> ##
> r := (rc[1]^2 + rc[2]^2)**(1/2);
> drdx[1] := rc[1]/r;
> drdx[2] := rc[2]/r;
> ## includes jacobian
> n[1] := 0;
> n[2] := ax;
> drdn := ax*rc[2]/r;

6.2.1 Linear: uk = ckr

> for l from 1 to 2 do
> for k from 1 to 2 do
> for m from 1 to 2 do
> p[l,k,m] := (2*drdn*((1-2*nu)*d[l,k]*drdx[m] +
> nu*(d[k,m]*drdx[l] + d[l,m]*drdx[k])
> - 4*drdx[l]*drdx[k]*drdx[m]) +
> 2*nu*(n[l]*drdx[k]*drdx[m]+n[k]*drdx[l]*drdx[m])
> +(1-2*nu)*(2*n[m]*drdx[l]*drdx[k]+n[k]*d[l,m]+n[l]*d[k,m])
> -(1-4*nu)*n[m]*d[l,k])/(r*r);
> ##
> i1 := x*p[l,k,m];
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> i1 := expand(i1);
> a1 := int(i1,x=-1..0):
> a1 := subs(arctan(ax*eps/sqrt(ax^2*del^2))=pi/2,a1);
> a1 := subs(arctan(ax*(ax-eps)/sqrt(ax^2*del^2))=pi/2,a1);
> a1 := subs(sqrt(ax^2*del^2)=ax*del,a1);
> a1 := subs(1/sqrt(ax^2*del^2)=1/(ax*del),a1);
> a1 := expand(a1);
> a1 := subs(del=0,a1);
> a1 := subs(ln(eps)=loge,a1);
> a1 := subs(ln(eps^2)=2*loge,a1);
> a1 := subs(eps=0,a1);
> ## singular terms
> a1 := collect(a1,loge);
> a1 := coeff(a1,loge,1);
> a1 := a1*ln(epsilon);
> p[l,k,m] := a1;
> od;
> od;
> od;
> ## stress
> ## c[1] is the linear coefficient from u_1
> sigma[1,2] := p[1,2,1]*c[1] + p[1,2,2]*c[2]:
> sigma[2,2] := p[2,2,1]*c[1] + p[2,2,2]*c[2]:
> sigma[1,2] := subs(sqrt(eps)=0,sigma[1,2]);
> sigma[2,2] := subs(sqrt(eps)=0,sigma[2,2]);
> sigma[1,2] := subs(1/(ax+4^(1/2)*sqrt(eps*ax)+eps)=
> 1/ax,sigma[1,2]);
> sigma[2,2] := subs(1/(ax+4^(1/2)*sqrt(eps*ax)+eps)=
> 1/ax,sigma[2,2]);
> sigma[1,2] := subs(1/(ax-4^(1/2)*sqrt(eps*ax)+eps)=
> 1/ax,sigma[1,2]);
> sigma[2,2] := subs(1/(ax-4^(1/2)*sqrt(eps*ax)+eps)=
> 1/ax,sigma[2,2]);

6.2.2 Square Root: uk = bkr
1=2

>

> for l from 1 to 2 do
> for k from 1 to 2 do
> for m from 1 to 2 do
> p[l,k,m] := (2*drdn*((1-2*nu)*d[l,k]*drdx[m] +
> nu*(d[k,m]*drdx[l]+d[l,m]*drdx[k])-4*drdx[l]*drdx[k]*drdx[m])
> + 2*nu*(n[l]*drdx[k]*drdx[m]+n[k]*drdx[l]*drdx[m])
> +(1-2*nu)*(2*n[m]*drdx[l]*drdx[k]+n[k]*d[l,m]+n[l]*d[k,m])
> -(1-4*nu)*n[m]*d[l,k])/(r*r);
> p[l,k,m] := expand(subs(x=q-eps/ax,p[l,k,m]));
> ##
> i1 := sqrt(eps/ax-q)*p[l,k,m];
> i1 := expand(i1);
> t1 := int(i1,q):
> b1 := ( subs(q=eps/ax,t1) - subs(q=-1+eps/ax,t1) );
> b1 := subs(sqrt(ax^2)=ax,b1):
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> b1 := subs(1/sqrt(ax^2)=1/ax,b1):
> # beta = sqrt(eps^2+del^2)
> b1 := subs(eps^2+del^2=beta^2,b1);
> b1 := expand(b1):
> b1 := subs((ax^2*beta^2)^(1/2)=ax*beta,b1):
> b1 := subs((beta^2)^(1/2)=beta,b1):
> b1 := subs((beta^2)^(-1/2)=1/beta,b1):
> b1 := subs((beta^2)^(3/2)=beta^3,b1):
> b1 := subs((beta^2)^(-3/2)=1/beta^3,b1):
> b1 := subs((beta^2)^(5/2)=beta^5,b1):
> b1 := subs((beta^2)^(-5/2)=1/beta^5,b1):
> b1 := expand(b1):
> b1 := subs((ax*del^2/eps)^(-1/2)=eps^(1/2)/(adel*ax^(1/2)),b1):
> b1 := subs((ax*del^2/eps)^(-3/2)=
> eps^(3/2)/(adel*del^2*ax^(3/2)),b1):
> b1 := subs((ax*del^2/eps)^(-5/2)=
> eps^(5/2)/(adel*del^4*ax^(5/2)),b1):
> b1 := subs(2*ax*beta+2*eps*ax=4*eps*ax*(1+del^2/eps^2/4),b1);
> # Taylor expansion for beta = eps*sqrt(1+del^2/eps^2)
> b1 := subs(2*ax*beta-2*eps*ax=ax*del^2/eps*(1-del^2/eps^2/4),b1);
> b1 := expand(b1):
> b1 := subs((ax*del^2/eps)^(-1/2)=eps^(1/2)/(adel*ax^(1/2)),b1):
> b1 := subs((ax*del^2/eps)^(-3/2)=
> eps^(3/2)/(adel*del^2*ax^(3/2)),b1):
> b1 := subs((ax*del^2/eps)^(-5/2)=
> eps^(5/2)/(adel*del^4*ax^(5/2)),b1);
> b1 := subs((ax^2)^(3/2)=ax^3,b1);
> b1 := subs((eps*ax)^(-3/2)=eps^(-3/2)*ax^(-3/2),b1);
> b1 := subs((eps*ax)^(-1/2)=eps^(-1/2)*ax^(-1/2),b1);
> b1 := subs(beta=eps*(1+del^2/eps^2/2),b1);
> p[l,k,m] := b1;
> od;
> od;
> od;
> ##
> ## stress
> ## b[1] is the sqrt coefficient from u_1
> ##
> sigma[1,2] := p[1,2,1]*b[1] + p[1,2,2]*b[2]:
> sigma[2,2] := p[2,2,1]*b[1] + p[2,2,2]*b[2]:
> ##
> for j from 1 to 2 do
> sigma[j,2] := subs( 4^(1/2)=2,sigma[j,2]):
> sigma[j,2] := subs(ax*del^2*(1-del^2/eps^2/4)/eps=tc1,sigma[j,2]):
> sigma[j,2] := subs(eps*ax*(1+del^2/(4*eps^2))=tc2,sigma[j,2]):
> sigma[j,2] := subs(arctan( (2*ax+2*sqrt(tc2))/sqrt(tc1))=
> pi/2,sigma[j,2]):
> sigma[j,2] := subs(arctan( (2*ax-2*sqrt(tc2))/sqrt(tc1))=
> pi/2,sigma[j,2]):
> sigma[j,2] := normal(sigma[j,2]):
> sigma[j,2] :=
> subs( ln((2*ax*eps+2*sqrt(ax*(4*eps^2+del^2)/eps)*eps+
> 2*eps^2+del^2)/(2*eps))=ln(ax),sigma[j,2]):
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> sigma[j,2] :=
> subs( ln((2*ax*eps-2*sqrt(ax*(4*eps^2+del^2)/eps)*eps+
> 2*eps^2+del^2)/(2*eps))=ln(ax),sigma[j,2]):
> #
> sigma[j,2] := subs( (-ax*del^2*(-4*eps^2+del^2)/eps^3)^(-5/2)=
> ax^(-5/2)*del^(-5)*(4*eps^2-del^2)^(-5/2)*eps^(15/2),sigma[j,2]):
> sigma[j,2] := subs( (ax*del^2*(4*eps^2-del^2)/eps^3)^(-5/2)=
> ax^(-5/2)*del^(-5)*(4*eps^2-del^2)^(-5/2)*eps^(15/2),sigma[j,2]):
> sigma[j,2] := subs( (ax*(4*eps^2+del^2)/eps)^(-5/2)=
> ax^(-5/2)*(4*eps^2+del^2)^(-5/2)*eps^(5/2),sigma[j,2]):
> sigma[j,2] := subs( (-4*eps^2+del^2)^(-2)=
> (4*eps^2-del^2)^(-2),sigma[j,2]):
> sigma[j,2] := subs( (4*eps^2+del^2)^(-9/2)=
> (16*eps^4-del^4)^(-9/2)/(4*eps^2-del^2)^(-9/2),sigma[j,2]):
> #
> sigma[j,2] := subs(
> (2*eps*ax-2*sqrt(ax*(4*eps^2+del^2)/eps)*eps+2*eps^2+del^2)^(-2)
> =2^(-2)*eps^(-2)*(sqrt(ax)-sqrt(eps))^(-2),sigma[j,2]):
> sigma[j,2] := subs(
> (2*eps*ax+2*sqrt(ax*(4*eps^2+del^2)/eps)*eps+2*eps^2+del^2)^(-2)
> =2^(-2)*eps^(-2)*(sqrt(ax)+sqrt(eps))^(-2),sigma[j,2]):
> sigma[j,2] := subs((sqrt(ax)+sqrt(eps))^(-2)=
> (ax-eps)^(-2)/(sqrt(ax)-sqrt(eps))^(-2),sigma[j,2]):
> sigma[j,2] := subs( (2*eps^2+del^2)^(-5)=
> (1-5*del^2/eps^2/2)*2^(-5)*eps^(-10),sigma[j,2]):
> sigma[j,2] := subs( (16*eps^4-del^4)^(-9/2)=
> (1+9*del^4/eps^4/32)*16^(-9/2)*eps^(-18),sigma[j,2]):
> sigma[j,2] := subs( 16^(1/2)=4,sigma[j,2]):
> sigma[j,2] := subs( (ax-eps)^(-2)=ax^(-2),sigma[j,2]):
> sigma[j,2] := expand(sigma[j,2]):
> #
> sigma[j,2] := subs( (4*eps*ax+ax*del^2/eps)^(9/2) =
> 4^(9/2)*eps^(9/2)*ax^(9/2)*(1+9*del^2/eps^2/8),sigma[j,2]):
> sigma[j,2] := subs( (4*eps*ax+ax*del^2/eps)^(7/2) =
> 4^(7/2)*eps^(7/2)*ax^(7/2)*(1+7*del^2/eps^2/8),sigma[j,2]):
> sigma[j,2] := subs( (4*eps*ax+ax*del^2/eps)^(5/2) =
> 4^(5/2)*eps^(5/2)*ax^(5/2)*(1+5*del^2/eps^2/8),sigma[j,2]):
> sigma[j,2] := subs( (4*eps*ax+ax*del^2/eps)^(3/2) =
> 4^(3/2)*eps^(3/2)*ax^(3/2)*(1+3*del^2/eps^2/8),sigma[j,2]):
> sigma[j,2] := subs( (4*eps*ax+ax*del^2/eps)^(1/2) =
> 4^(1/2)*eps^(1/2)*ax^(1/2)*(1+del^2/eps^2/8),sigma[j,2]):
> #
> sigma[j,2] := subs( (4*ax*del^2/eps-ax*del^4/eps^3)^(9/2)=
> (1+9*del^2/eps^2/8)*ax^(9/2)*del^9*(4/eps)^(9/2),sigma[j,2]):
> sigma[j,2] := subs( (4*ax*del^2/eps-ax*del^4/eps^3)^(7/2)=
> (1+7*del^2/eps^2/8)*ax^(7/2)*del^7*(4/eps)^(7/2),sigma[j,2]):
> sigma[j,2] := subs( (4*ax*del^2/eps-ax*del^4/eps^3)^(5/2)=
> (1+5*del^2/eps^2/8)*ax^(5/2)*del^5*(4/eps)^(5/2),sigma[j,2]):
> sigma[j,2] := subs( (4*ax*del^2/eps-ax*del^4/eps^3)^(3/2)=
> (1+3*del^2/eps^2/8)*ax^(3/2)*del^3*(4/eps)^(3/2),sigma[j,2]):
> sigma[j,2] := expand(sigma[j,2]):
> sigma[j,2] := subs(del=0,sigma[j,2]):
> sigma[j,2] := subs( (1/eps)^(5/2)=eps^(-5/2),sigma[j,2]):
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> sigma[j,2] := normal(sigma[j,2]):
> sigma[j,2] := subs(eps=0,sigma[j,2]):
> od;
> #
> sigma[1,2];
> sigma[2,2];

6.2.3 Traction Integral

> for l from 1 to 2 do
> for k from 1 to 2 do
> for m from 1 to 2 do
> s[l,k,m] := ( (1-2*nu)*(drdx[k]*d[l,m] + drdx[l]*d[k,m] -
> drdx[m]*d[l,k]) + 2*drdx[l]*drdx[k]*drdx[m] )/r;
> ##
> i1 := s[l,k,m];
> i1 := expand(i1);
> t1 := int(i1,x=-1..0):
> t1 := subs((ax^2*del^2)^(-1/2)=1/(ax*adel),t1);
> t1 := subs((ax^2*del^2)^(-1/2)=1/(ax*adel),t1);
> t1 := subs(arctan(eps/adel)=pi/2,t1);
> t1 := subs(arctan((ax-eps)/adel)=pi/2,t1);
> t1 := expand(t1);
> s[l,k,m] := t1;
> od;
> od;
> od;
> ##
> ## stress
> ## a[1] is the constant coefficient from tau_1
> ##
> sigma[1,2] := s[1,2,1]*a[1] + s[1,2,2]*a[2];
> sigma[2,2] := s[2,2,1]*a[1] + s[2,2,2]*a[2];
> sigma[1,2] := subs(del=0,sigma[1,2]);
> sigma[2,2] := subs(del=0,sigma[2,2]);
> sigma[1,2] := subs(log(eps^2)=loge,sigma[1,2]);
> sigma[2,2] := subs(log(eps^2)=loge,sigma[2,2]);
> sigma[1,2] := subs(eps=0,sigma[1,2]);
> sigma[2,2] := subs(eps=0,sigma[2,2]);

6.3 Exact Solutions

Listed below is the coding employed to evaluate the linear term coe�cient for the four
examples in Section 4.

> ##
> ## Example 5.10 from Tada et al. (1985)
> ## aa = 1/(a-b) bb = b/(a*(a-b))
> ##
> #f := arccosh((1+bb*s^2)/(1-aa*s^2));
> ##

35



> ## Example 7.1a from Tada et al. (1985)
> ##
> #f := arccosh(cos(pi*(ax-s^2)/w)/cos(pi*ax/w));
> ##
> ## Example 7.4a from Tada et al. (1985)
> ## pw = pi/w
> ##
> #g1 := 1 - (cos(a*pw)/cos(pw*(a-s^2)))^2;
> #g2 := 1 - (cos(a*pw)/cosh(pw*y0))^2;
> #g := sqrt(g1/g2);
> #f1 := arctanh(g);
> #f2 := diff(f1,y0);
> #f := f1 - alpha*y0*f2;
> ##
> ## Example 14.1a from Tada et al. (1985)
> ## ph = pi/H
> ##
> #g1 := cosh((a-s^2)*ph);
> #g2 := cosh(a*ph);
> #g := g1/g2;
> #f := arccos(g);
> ##
> ## This is the common piece of coding for all four problems
> ##
> d1 := diff(f,s);
> d2 := diff(d1,s);
> d2 := normal(d2);
> num := numer(d2);
> den := denom(d2);
> #### Extra statements for Example 14.1a
> #num := subs(cosh(a*ph)=(exp(a*ph)+exp(-a*ph))/2,num);
> #num := subs(sinh(a*ph)=(exp(a*ph)-exp(-a*ph))/2,num);
> #num := expand(num);
> #den := subs(cosh(a*ph)=(exp(a*ph)+exp(-a*ph))/2,den);
> #den := subs(sinh(a*ph)=(exp(a*ph)-exp(-a*ph))/2,den);
> #den := expand(den);
> ####
> num := series(num,s=0,8):
> num := convert(num,polynom):
> num := expand(num);
> den := series(den,s=0,9):
> den := convert(den,polynom):
> den := expand(den);
> d2 := normal(num/den);
> d2 := subs(s=0,d2);
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