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Abstract

We present a modi�cation to the quarter-point crack tip element and employ this element
in two-dimensional boundary integral fracture analysis. The standard singular element is
adjusted so that the near-tip crack opening displacement satis�es a known constraint: the
coe�cient of the term which is linear in the distance to the tip must vanish. Stress inten-
sity factors calculated with the Displacement Correlation Technique are shown to be highly
accurate, and signi�cantly more accurate than with the standard element. The improve-
ments are especially dramatic for mixed-mode problems involving curved and interacting
cracks.
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1 Introduction

The numerical modeling of crack stability and propagation (Rice 1968) requires the ac-
curate determination of stress intensity factors (SIFs), which in turn relies on the correct
representation of the local crack tip stress and displacement �elds. For a crack geometry,
William's (1952, 1957) result for the displacement u = uk, k = 1; 2, in the neighborhood
of the tip is:

uk(r; �) = ak + bk(�)r
1

2 + ck(�)r + dk(�)r
3

2 + : : : ; (1)

where r; � are the distance to, and the direction emanating from, the tip, respectively.
Thus the crack opening displacement �u = �uk, k = 1; 2 at the tip, is

�uk(r; �) = bk(�)r
1

2 + ck(�)r + dk(�)r
3

2 + : : : : (2)

In both �nite and boundary element modeling of discrete cracks, the standard approach
consists of incorporating the critical

p
r behavior by means of the `quarter-point' ele-

ment originally developed by Henshell and Shaw (1975), and Barsoum (1976). Use of
special elements at the crack tip has signi�cantly improved the accuracy of stress inten-
sity factor (SIF) calculations (Blandford et al. 1981; Sladek and Sladek 1986; Linkov and
Mogilevskaya 1994) , and the original quarter-point element has been extended and re�ned
in a number of ways (Banks-Sills 1991; Lim et al. 1993; Horv�ath 1994). Nevertheless,
in either �nite or boundary element analyses, the prediction of sliding and twisting stress
intensity modes, KII ; KIII , has not been nearly as accurate as for the opening mode KI .

Recently, Gray and Paulino (1998) proved that, irrespective of the problem geometry
or boundary conditions, the series expansion in Eq. (2) must have ck = 0 for �u on

the crack surface (for related work see Martin 1991 ). As will be discussed below, in
general the quarter-point element fails to satisfy this constraint, and it is this 
aw that
is addressed in this paper. By forcing the linear term in �u to be zero, we expect to
have a more accurate analysis in the tip region. This is in fact borne out by the test
calculations, as a dramatic improvement in the accuracy of stress intensity factors is seen.
These calculations employ a Symmetric-Galerkin boundary integral fracture analysis (see,
for example, Sirtori et al. 1992 and Bonnet et al. 1998) coupled with a Displacement
Correlation technique for evaluating the SIFs.

The remaining sections of this paper are organized as follows. The next section presents
the shape functions for the improved quarter-point element. The symmetric-Galerkin
boundary integral approximation for modeling generic fracture mechanics problems, to be
used in the computational examples, is reviewed in Section 3. The numerical examples
in Section 4 treat several di�erent crack con�guations, and display the superiority of the
modi�ed quarter-point element over the standard element. Finally, some closing remarks
are given.
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2 Modi�ed Quarter-Point Element

The two-dimensional quarter-point element is based upon the three-noded quadratic ele-
ment. For t 2 [0; 1], the shape functions for this element are given by

 1(t) = (1� t)(1� 2t) ;

 2(t) = 4t(1� t) ; (3)

 3(t) = t(2t� 1) :

As �u = 0 at the crack tip, assumed to be at t = 0, the representations of the crack tip
geometry and crack opening displacement are

�(t) =
3X

j=1

(xj j(t); yj j(t))

�uk(t) =
3X

j=2

�
�uj1 j(t); �u

j
2 j(t)

�
: (4)

Here (xj; yj) are the coordinates of the three nodes de�ning the element, and �ujk the
nodal values of the crack opening displacement (COD).

Henshell and Shaw (1975) and independently Barsoum (1976), demonstrated that by
moving the mid-node coordinates (x2; y2) three fourths of the way towards the tip, the

parameter t becomes
q
r=L, with L being the distance from (x1; y1) to (x3; y3). As a

consequence, the leading order term in �ujk at t = 0, which is t, is the correct square
root of distance . Note however, that the next term, which is t2, is r=L. According to
Gray and Paulino (1998), this term should vanish, and the modi�cation presented below
replaces this term with (r=L)3=2.

For the new approximation, we keep the representation of �(t) as in Eq. (4), so that
the property t � p

r remains, and the interpolation of the geometry remains quadratic.
However for the COD, we de�ne new shape functions by adding a cubic term:

 ̂2(t) = 4t(1� t)� 4t(1� t)(1� 2t)=3 = �8

3
(t3 � t) ; (5)

 ̂3(t) = t(2t� 1) + 2t(1� t)(1� 2t)=3 =
4

3
(4t3 � t) :

This additional contribution accomplishes the cancellation of the t2 � r term, without
disturbing the interpolation, i.e.,

 ̂2(0) = 0 ;  ̂2(1=2) = 1 ;  ̂2(1) = 0 ; (6)
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 ̂3(0) = 0 ;  ̂3(1=2) = 0 ;  ̂3(1) = 1 : (7)

As might be expected, this alteration does not radically alter the COD shape functions,
as seen in Fig. 1.
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Figure 1: Standard (Q2; Q3) and modi�ed (M2;M3) shape functions.

3 Symmetric Galerkin Boundary Integral Fracture

Analysis

The test calculations reported below employ a two-dimensional Symmetric-Galerkin ap-
proximation, and thus this section presents a quick overview of this technique. A good
introduction to the Galerkin method is provided in the recent text by Bonnet (1995), and
a recent review by Bonnet et al. (1998) on Symmetric-Galerkin provides an excellent
summary and references to the literature. The primary motivation for this brief review
is to point out that, in the Galerkin approach, the shape functions do more than simply
de�ne the interpolation approximations for the surface and boundary functions: they are
directly involved in how the continuous integral equations are reduced to �nite matrices.
Thus, in this approach, the change from the standard quater-point element to the new
one will signi�cantly impact the approximation.

The two-dimensional displacement boundary integral equation is given by (Rizzo 1967;
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Cruse 1988)

U(P ) = uk(P ) +
Z
@B
Tkj(P;Q)uj(Q) dQ�

Z
@B
Ukj(P;Q)�j(Q) dQ = 0 ; (8)

where u and � denote displacement and traction, respectively. As customary, the kernel
functions Tkj(P;Q) and Ukj(P;Q) are given by the Kelvin solution for a point load in
an in�nite medium (formulas for these functions, along with those for the stress equation
below, can be found in the Appendix). The corresponding integral equation for the surface
stress is essential for treating crack geometries, and in the Symmetric-Galerkin approach
it is this equation that is employed on the crack surface. The stress equation (from which
one gets an equation for surface traction by multiplying by the appropriate normal vector)
is obtained by di�erentiating Eq. (8) with respect to P , resulting in

S(P ) = �lk(P ) +
Z
@B
Slkm(P;Q)um(Q) dQ�

Z
@B
Dlkm(P;Q)�m(Q) dQ = 0 : (9)

In a Galerkin formulation, the above integral equations are enforced `on average', in the
form Z

@B
 l(P )U(P ) dP = 0 ;Z

@B
 l(P )S(P ) dP = 0 : (10)

The weight functions  l(P ) are the shape functions employed to interpolate the bound-
ary displacements and tractions. Again, note that the modi�ed shape functions for the
quarter-point are employed to de�ne the Galerkin equations in the crack tip region.

For symmetric-Galerkin (Sirtori 1979, Hartmann et al. 1985), the displacement equation
is employed on the part of the boundary where displacement is speci�ed, while the traction
equation is employed on the part of the boundary where traction is known. As the name
implies, this results in a symmetric coe�cient matrix. This remains true for fracture
problems, with the proviso that the unknowns on the crack surface are now the jump in
displacement.

A key advantage of the Galerkin approach is that the extra boundary integration simpli�es
the task of de�ning and evaluating the hypersingular integral. Nevertheless, the main
computational task in implementing Eq. (10) is the evaluation of the singular integrals.
For two dimensional problems there are a number of techniques available, e.g., H�olzer
(1993), Frangi and Novati (1996). In this work, the singular integration is accomplished
by means of direct hybrid analytical/numerical algorithms, as described by Gray (1998) .

In regards to the singular integration, it is important to note that the modi�ed shape
functions present no di�culties, and in fact are easily incorporated in an existing quadratic
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element code. The standard quadratic and modi�ed quarter-point shape functions can be
conveniently written in the general form

 ̂j(t) =  j(t) + � �j t(1� t)(1� 2t) : (11)

Here � is used to distinguish a crack tip element (� = 1) from a regular element (� = 0);
the values for the constants � are �1 = �3 = � 2=3 and �2 = � 4=3, and the upper or
lower sign is employed if the crack tip is located at the �rst (t = 0) or third node (t = 1),
respectively. In the latter case, by letting s = 1� t, one again obtains the modi�ed shape
functions in Eq. (5) in terms of the variable s.

From this form it is clear that implementing the modi�ed crack tip only requires the
additional integration of the t(1 � t)(1 � 2t) expression. As this function is zero at the
three nodes, it only contributes to the "lower order" singular terms, and in these terms it
simply changes some polynomial coe�cients. Thus, the analytical integration codes built
for the standard quadratic shape functions (Gray 1998) can be re-used here with only
minor modi�cation.

4 Test Calculations

SIFs provided by the quarter-point elements (both modi�ed and standard) will be calcu-
lated by means of the Displacement Correlation Technique (DCT). The point here is to
assess the quality of the modi�ed quarter point element by means a very simple method
such as the DCT. The general expression of SIFs by means of the DCT technique are
given by

KI =
G

�+ 1
lim
r!0

s
2�

r
�u2

KII =
G

�+ 1
lim
r!0

s
2�

r
�u1 (12)

where �uk is the COD in the coordinate system associated with the crack tip under
consideration, G is shear modulus, and � is Poisson's ratio,

� = 3� 4� (plane strain) , � =
3� �

1 + �
(plane stress) : (13)

By using the modi�ed quarter-point (QP) shape functions in Eq. (5), one gets (the crack
tip is assumed to be at the �rst node A, see the schematic of parameter space in Figure
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Figure 2: Crack tip element.

2)

�uk = �uBk  ̂2(t) + �uCk  ̂3(t)

=
1

3
(8�uBk ��uCk ) t+

4

3
(�uCk � 2�uBk ) t

3 (14)

Use of (14) in (12), with t =
q
r=L, yields

KI =
G

3(�+ 1)

s
2�

L
(8�uB2 ��uC2 )

KII =
G

3(�+ 1)

s
2�

L
(8�uB1 ��uC1 ) (15)

Thus, SIFs are given directly in terms of the nodal values of the crack opening displacement
at the crack tip element.

In order to assess the various features of the modi�ed quarter-point element, the following
examples are presented:

1. Single interior crack

1.1 Mode I case

1.2 Mixed-mode case

2. Pair of interacting collinear cracks

3. Pair of interacting circular-arc cracks

4. `O�-center' crack
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5. Three-point bending specimen

In the presentation below, the modi�ed QP is compared with the standard quarter point
element. For all examples, consistent units are used and the following material constants
are employed: Young's modulus E = 0:36, Poisson's ratio � = 0:27. The �rst three
examples deal with in�nite body problems and the numerical results are compared with
the analytical solutions given by Tada et al. (1973), whereas the last two examples involve
�nite body cases.

4.1 Single interior crack

Consider a plate containing a single interior crack which is oriented arbitrarily with respect
to the angle �, as illustrated Figure 3. The plate is subjected to the remote uniaxial
tension � = 100 applied along the y-axis. The crack length is 2a = 0.4 and the plate
dimensions are 2H = 2W = 200 which can be approximated as an unbounded domain in
this case. Two cases will be considered, the mode I case (� = 0), and the mixed-mode
case (0 < � < �=2).

θ

σ

2W

2H

σ

2a

Figure 3: Single interior crack.
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4.1.1 Mode I case (� = 0)

Consider a single interior crack aligned along the x-axis, i.e. � = 0 (see Figure 3).
The crack opening displacements (displacement discontinuities along the crack) �u2 are
depicted in Figure (4), with the crack being discretized into 10 uniform quadratic elements.
It can be seen that the SG-BEM solutions using the standard and modi�ed QP elements
are in very good agreement with the analytical solution.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

50

100

150

200

250

r/a

∆ 
u 2

Analytical solution 
SG−BEM (standard QP)
SG−BEM (modified QP)

Figure 4: Crack opening displacement solutions.

With this mesh, however, while the modi�ed QP element can give very accurate value of
the mode-I SIF (KI=K

exact
I = 0:9999), the result obtained from the standard QP element

is (KI=K
exact
I = 1:0233). A �ner mesh needs to be employed in the standard QP case

to improve the result while the solution obtained from the modi�ed QP case is mostly
insensitive with the mesh (see Table 1). In fact, when the modi�ed QP shape functions
are used, the solution is slightly less accurate as the mesh becomes �ner. This may be
explained by the fact that the crack tip element should be `long enough' in order for the
t3 terms in the shape functions (see Eqs. (5) and (14)) to exhibit their presence. This is
another advantage of the modi�ed QP element because it means that the mesh on the
crack does not need to be excessively re�ned in order to obtain accurate results.
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Table 1: KI=K
exact
I as function of the number of crack elements

# crack elements Standard QP Modi�ed QP

8 1.0298 1.0002
10 1.0233 0.9999
20 1.0110 0.9996
30 1.0070 0.9996
40 1.0050 0.9995
50 1.0038 0.9995
60 1.0030 0.9995
70 1.0025 0.9995
80 1.0021 0.9995

4.1.2 Mixed-mode case (0 < � < �=2)

Consider mixed-mode situation where 0 < � < �=2. Table 2 reveals that the errors of
KI and KII evaluated from the standard and modi�ed QP elements are consistent and
uniform no matter what value of �. Again, with ten crack elements employed, modi�ed
QP shape functions give excellent accuracy for both KI and KII.

Table 2: Normalized SIFs as functions of angle �

Angle Standard QP Modi�ed QP
� KI=K

exact
I KII=K

exact
II KI=K

exact
I KII=K

exact
II

�/12 1.0233 1.0233 0.9999 0.9999
�/6 1.0233 1.0233 0.9999 0.9999
�/4 1.0233 1.0233 0.9999 0.9999
�/3 1.0233 1.0233 0.9999 0.9999

4.2 Pair of interacting collinear cracks

This is an example of two interacting cracks which have the same length 2a = 0:2 and
are separated by a gap b (see Figure (5)). The plate can be considered as an in�nite
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Figure 5: Pair of interacting collinear cracks.

domain by using the same dimensions as those in the previous example. The cracks are
subjected to uniaxial tension � = 100 applied in the direction perpendicular to the cracks.
The mode-I SIF at the inner crack tips is of interest.

For the case b = 4a, the numerical results for (KI=K
exact
I ), as a function of the number

of elements per crack, are virtually the same as for the central crack example. The same
remarks as above therefore apply here. The e�ect of crack interaction is depicted in Figure
6 where ten elements per crack are employed. The numerical error of KI increases as the
gap between the cracks decreases. However, it can be seen that the increase in error rate
for the standard QP is higher as the cracks come closer to each other. Moreover, the
error from the modi�ed QP is always much lower no matter what the value of the gap.
This error is less than 1% even when the ratio b=a is less than one-quarter.

4.3 Pair of interacting circular-arc cracks

It is generally recognized that the Displacement Correlation Technique combined with the
standard QP shape functions usually produce poor accuracy for SIFs in case of mixed-
mode situations. Use of modi�ed QP elements instead can improve considerably this
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Figure 6: E�ect of crack interaction.

accuracy as shown in this example.

Consider a mixed-mode example through a pair of circular-arc cracks of radius R = 0.1,
angle � = �=2, embedded in a plate of dimension (2H � 2W), and subjected to remote
biaxial tension � as shown in Figure 7. The same plate dimension as in two previous
examples is chosen again in order to consider this problem as an unbounded domain. Five
elements (of uniform length) per crack are used. For comparison purposes, an asymptotic
solution for the COD, valid as r! 0, can be derived from the exact SIF values,

�uasy2 =
�+ 1

G

r
r

2�
Kexact

I

�uasy1 =
� + 1

G

r
r

2�
Kexact

II : (16)

Figure 8 illustrates the SG-BEM result versus the asymptotic solution for the crack opening
displacements �u2 and �u1 along the crack tip element.

Although �u2 given by the standard and modi�ed QP are seen to be in very good agree-
ment with �uasy2 near the crack tip as shown in the left plot of Figure 8, the accuracy of
the KI obtained from the modi�ed QP is much better as shown in Table 3. On the other
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Figure 7: Pair of circular-arc cracks.

hand, while �u1 given by the modi�ed QP is in good agreement with the asymptotic
solution, this is not the case for �u1 obtained from the standard QP (see the right plot
of Figure 8). This explains why the KII from the modi�ed QP is much more accurate
than that from the standard one as seen in Table 3.

The e�ect of crack interaction on the SIFs for modes I and II (as a function of �) is
depicted in Figure 9. For mode-I SIF, similar remarks as those derived in the pair of
aligned cracks can also be observed here. However, while the mode-II SIF obtained from
the standard QP is mostly unchanged with the increase of �, the modi�ed QP element
helps to dramatically improve this quantity, even where the crack tips are very close
(� � �).

4.4 `O�-center' crack

This example deals with mixed-mode case in a �nite body. Consider a crack whose location
and orientation are arbitrary in a plate, subjected to the remote uniaxial tension � applied
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Table 3: Normalized SIFs.

Normalized SIFs Standard QP Modi�ed QP

KI=K
exact
I 1.0711 1.0047

KII=K
exact
II 0.7512 0.9625
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Figure 8: Solutions for the crack opening displacement �u along the crack tip ele-
ment.

along the y-axis as shown in Figure 10. The following geometry data are studied: 2W =
2H = 2, 2a = 0.5 and ex = ey = 0:5. The standard and modi�ed QP shape functions
are used with 10 uniform elements on the crack. Numerical results, normalized by �

p
�a,

for mode I and II SIFs at both crack tips A and B are presented in Tables 4 and 5 along
with those given in Yuanhan (1991). It can be observed that all the solutions obtained
from the modi�ed QP shape functions are much closer to the reference than those from
the standard ones. Note that the reference results are not the exact solution because
they are also obtained by another numerical approach. However, since the approach used
is the boundary collocation method which is supposed to be more accurate than the
displacement correlation technique, it can be concluded once again that mixed-mode SIFs
are improved by using the modi�ed QP shape functions. Finally, these improved results
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Figure 9: E�ect of crack interaction on SIFs.

are illustrated in Figure 11 as functions of angle �.

Table 4: Normalized SIFs at crack tip A as functions of crack angle �

Angle KA
I =�

p
�a KA

II=�
p
�a

� Standard QP Modi�ed QP Reference Standard QP Modi�ed QP Reference

0 1.2259 1.2022 1.2001 0.0306 0.0274 0.0271
�/6 0.9096 0.8926 0.8918 0.4977 0.4869 0.4870
�/3 0.3097 0.3034 0.3030 0.4842 0.4743 0.4738
�/2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
2�/3 0.2807 0.2767 0.2764 -0.5004 -0.4891 -0.4873
5�/6 0.8987 0.8819 0.8794 -0.5328 -0.5189 -0.5154
� 1.2540 1.2278 1.2227 -0.0469 -0.0436 -0.0426
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Figure 10: `O�-center' crack.

Table 5: Normalized SIFs at crack tip B as functions of crack angle �

Angle KB
I =�

p
�a KB

II=�
p
�a

� Standard QP Modi�ed QP Reference Standard QP Modi�ed QP Reference

0 1.2540 1.2278 1.2227 -0.0469 -0.0436 -0.0426
�/6 0.9665 0.9460 0.9431 0.4950 0.4844 0.4832
�/3 0.3178 0.3109 0.3086 0.5067 0.4953 0.4933
�/2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
2�/3 0.3347 0.3254 0.3217 -0.4918 -0.4816 -0.4790
5�/6 0.9527 0.9315 0.9274 -0.4646 -0.4577 -0.4580
� 1.2259 1.2022 1.2001 0.0306 0.0274 0.0271

4.5 Three-point bending beam

The last example deals with a surface crack and bending deformation. A three-point
bending beam under opening mode as shown in Figure 12 is studied. Mode-I SIF is
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Figure 12: Three-point notched bending beam.

evaluated for a wide range of geometry of the beam and crack using crack elements
of uniform length �a = 0.02W. The SG-BEM results are compared with the analytical
solution proposed by Guinea et al. (1998) and listed in Table 6. Deviation of the standard
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and modi�ed QP results from the reference is illustrated in Figure 13. It can be seen that
all results obtained from the modi�ed QP shape functions are in better agreement with
the reference except in case L/W = 2.5 and a/W = 0.1. Since the Guinea et al.'s solution
is a good but not an absolutely exact reference, this incompatibility might serve as an
indication to revise the proposed expression in the above case.

Table 6: KI=K
ref
I as functions of L/W and a/W

a/W L/W = 2.5 L/W = 8
Standard QP Modi�ed QP Standard QP Modi�ed QP

0.1 0.9898 0.9870 1.0020 0.9981
0.2 0.9816 0.9855 0.9959 0.9995
0.3 0.9800 0.9868 0.9941 1.0011
0.4 0.9797 0.9887 0.9914 1.0011
0.5 0.9791 0.9905 0.9868 0.9990
0.6 0.9770 0.9916 0.9791 0.9946
0.7 0.9722 0.9920 0.9657 0.9862
0.8 0.9610 0.9908 0.9546 0.9851
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Figure 13: Deviation of the standard and modi�ed QP results from the reference.
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5 Conclusions

The modi�ed quarter-point crack tip element de�ned in this paper has been shown to
produce highly accurate SIFs. This is the case even though the calculations employed
relatively coarse meshes, combined with the very simple local method (displacement cor-
relation) to calculate SIFs. Moreover, the modi�ed quarter-point element has been shown
to be consistently superior to the standard quarter-point element. Thus, this improved
element should be very useful for crack propagation simulations, as in these calculations
is di�cult to minutely control the meshing.

As the modi�ed element only serves to improve the local COD solution at the tip, it
is not expected to have a signi�cant impact on non-local SIF evaluation methods, e.g.,
J-integral. However, the hope is that combining this element with simple and computa-
tionally inexpensive local SIF methods will produce su�cient accuracy, in both two and
three dimensions.

The extension of this work to three dimensions should be possible. The �rst step would be
to establish that the linear term constraint remains valid; extending the two-dimensional
analysis in [10] appears to be straightforward. The second step, developing a modi�ed
crack tip element (again from quadratic to cubic), should follow along the same lines as
presented herein. These investigations are currently being pursued by the authors.

Acknowledgments

This research was supported in part by the Applied Mathematical Sciences Research Pro-
gram of the O�ce of Mathematical, Information, and Computational Sciences, U.S. De-
partment of Energy under contract DE-AC05-00OR22725 with UT-Battelle, LLC. Ad-
ditional support was provided by the Laboratory Directed Research and Development
Program of the Oak Ridge National Laboratory. G. H. Paulino acknowledges the sup-
port from the National Science Foundation under grant CMS-9713008 (Mechanics and
Materials Program).

References

[1] L. Banks-Sills, Application of the �nite element method to linear elastic frac-

ture mechanics, Appl. Mech. Rev., 44 (1991), pp. 447{461.

18



[2] R. S. Barsoum, On the use of isoparametric �nite elements in linear fracture

mechanics, Int. J. Numer. Meth. Engrg., 10 (1976), pp. 25{37.

[3] G. E. Blandford, A. R. Ingraffea, and J. A. Liggett, Two-dimensional

stress intensity factor computations using the boundary element method, Int. J.
Num. Meth. Engng, 17 (1981), pp. 387{404.

[4] M. Bonnet, Boundary Integral Equation Methods for Solids and Fluids, Wiley
and Sons, England, 1995.

[5] M. Bonnet, G. Maier, and C. Polizzotto, Symmetric Galerkin boundary

element method, ASME Appl. Mech. Rev., 51 (1998), pp. 669{704.

[6] C. A. Brebbia, J. C. F. Telles, and L. C. Wrobel, Boundary Element

Techniques, Springer-Verlag, Berlin and New York, 1984.

[7] T. A. Cruse, Boundary Element Analysis in Computational Fracture Mechan-

ics, Kluwer Academic Publishers, Boston, 1988.

[8] A. Frangi and G. Novati, Symmetric BE method in two-dimensional elastic-

ity: evaluation of double integrals for curved elements, Computational Mechanics,
19 (1996), pp. 58{68.

[9] L. J. Gray, Evaluation of singular and hypersingular Galerkin boundary inte-

grals: direct limits and symbolic computation, in Singular Integrals in the Boundary
Element Method, V. Sladek and J. Sladek, eds., Advances in Boundary Elements,
Computational Mechanics Publishers, 1998, ch. 2, pp. 33{84.

[10] L. J. Gray and G. H. Paulino, Crack tip interpolation, revisited, SIAM J.
Applied Mathematics, 58 (1998), pp. 428{455.

[11] G. Guinea, J. Pastor, J. Planas, and M. Elices, Stress intensity factor,

compliance and cmod for a general three-point-bend beam, Int. J. Fracture, 89
(1998), pp. 103{116.

[12] R. D. Henshell and K. G. Shaw, Crack tip �nite elements are unnecessary,
Int. J. Numer. Meth. Engrg., 9 (1975), pp. 495{507.

[13] S. M. H�olzer, How to ideal with hypersingular integrals in the symmetric BEM,
Comm. Num. Meth. Engng., 9 (1993), pp. 219{232.

[14] �A. Horv�ath, Higher-order singular isoparametric elements for crack problems,
Comm. Num. Meth. Engng., 10 (1994), pp. 73{80.

19



[15] I. L. Lim, I. W. Johnston, and S. K. Choi, Application of singular quadratic

distorted isoparametric elements in linear fracture mechanics, Int. J. Numer.
Meth. Engrg., 36 (1993), pp. 2473{2499.

[16] A. M. Linkov and S. G. Mogilevskaya, Complex hypersingular integrals

and integral equations in plane elasticity, Acta Mechanica, 105 (1994), pp. 189{
205.

[17] P. A. Martin, End-point behavior of solutions to hypersingular equations, Proc.
R. Soc. Lond., A, 432 (1991), pp. 301{320.

[18] J. R. Rice, Mathematical analysis in the mechanics of fracture, in Fracture {
An Advanced Treatise, H. Liebowitz, ed., vol. II, Pergamon Press, Oxford, 1968,
pp. 191{311.

[19] F. J. Rizzo, An integral equation approach to boundary value problems of clas-

sical elastostatics, Quart. Appl. Math., 25 (1967), pp. 83{95.

[20] S. Sirtori, G. Maier, G. Novati, and S. Miccoli, A Galerkin symmetric

boundary element method in elasticity: formulation and implementation, Int. J.
Numer. Meth. Engrg., 35 (1992), pp. 255{282.

[21] J. Sladek and V. Sladek, Dynamic stress intensity factors studied by bound-

ary integro-di�erential equations, Int. J. Numer. Meth. Engrg., 23 (1986), pp. 919{
928.

[22] H. Tada, P. Paris, and G. Irwin, The Stress Analysis of Cracks Handbook,
Del Research Corporation, Hellertown, Pennsylvania, 1973.

[23] M. L. Williams, Stress singularities resulting from various boundary condi-

tions in angular corners of plates in extension, ASME J. Appl. Mech., 19 (1952),
pp. 526{528.

[24] , On the stress distribution at the base of a stationary crack, ASME J. Appl.
Mech., 24 (1957), pp. 109{114.

[25] W. Yuanhan, Asymmetric crack problems calculated by the boundary colloca-

tion method, Engineering Fracture Mechanics, 40 (1991), pp. 133{143.

20



Appendix

For convenience, the kernel functions for the displacement and stress boundary integral
equations are provided below. The Kelvin solution Ukj is well known to be

Ukj(P;Q) =
1

8�G(1� �)
[�(3� 4�)�kj log(r) + r;kr;j] : (17)

Di�erentiating this displacement to obtain traction results in

Tkj(P;Q) = � 1

4�(1� �)r

"
f(1� 2�)�kj + 2r;kr;jg @r

@n
�

(1� 2�) fnjr;k � nkr;jg
#
: (18)

The kernels Dlkm(P;Q) (singular) and Slkm(P;Q) (hypersingular) for the stress equation
are given by (see Brebbia et al. 1984, Eqs. (5.69) and (5.70))

Dlkm =
1

4�(1� �)r
[(1� 2�) f�lmr;k + �kmr;l � �lkr;mg+ 2r;lr;kr;m]

Slkm =
�

2�(1� �)r2

"
2
@r

@n
(f1� 2�g �lkr;m + � (�kmr;l + �lmr;k)� 4r;lr;kr;m)

+(1� 2�) (2nmr;lr;k + nk�lm + nl�km)

+2� (nlr;kr;m + nkr;lr;m)� (1� 4�)nm�lk

�
: (19)

In these equations, � is Poisson's ratio, � is shear modulus, �ij is the Kronecker delta,
r;i = @r=@qi, and qi is the i

th coordinate of the �eld point Q.
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