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Abstract

This paper discusses the formulation and implementation of the symmetric Galerkin

boundary integral method for two dimensional linear elastic orthotropic fracture analysis.

For the usual case of a traction-free crack, the symmetry of the coe�cient matrix can be

e�ectively exploited to signi�cantly reduce the computational work required to construct

the linear system. In addition, computation time is reduced by employing e�cient analytic

integration formulas for the analysis of the orthotropic singular and hypersingular integrals.

Test calculations demonstrate that the method is both accurate and e�cient.
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1 Introduction

Numerical methods such as �nite elements and boundary elements are essential for solving en-

gineering fracture mechanics problems. A disadvantage of the �nite element method is the need

to discretize the entire volume around the crack. This makes simulation of crack propagation a

very di�cult task, especially in three-dimensions and for multiple crack problems. The boundary

element method (BEM) permits an elegant treatment of the fracture problem, although e�cient

crack modeling has proven to be a challenging task.

The direct application of the standard boundary integral equation (BIE) for discrete cracks

is known to be an ill-posed problem (Cruse 1988). Special Green's functions for a traction-free

crack of simple geometry (straight or an arc of a circle) have been developed (e.g. Paulino, Saif

and Mukherjee 1994), but these techniques are generally based on complex variables and are

therefore limited to two-dimensional (2D) problems. Moreover, the BIE treatment of multiple

crack problems by means of conformal mapping and complex variables is quite complicated.

The multi-domain formulation of Blandford, Ingra�ea and Liggett (1981) is a general pur-

pose boundary integral fracture algorithm. The method consists of dividing the domain into

zones such that the cracks lie along the zone boundaries, and hence no crack appears in the

interior of any zone. In this process, interior nodes and elements are introduced to connect the

crack(s) to the outer boundary. Tan and Gao (1992) have applied this technique to orthotropic

elasticity. The two main disadvantages of the multi-domain method are the computational ex-

pense and the necessity of dealing with the singular stress �eld ahead of the crack. Both of these

negative aspects are due to the introduction of the `arti�cial separation surfaces'. In addition,

these surfaces also make this method impractical for an automatic crack propagation simulation.

The �eld of hypersingular boundary integral equations (HBIEs) has opened possibilities

for new solutions of various problems by the BEM (see, for example, the review article by Krish-

nasami, Rizzo and Rudolphi 1992). Recently, methods based on HBIEs have been developed to

overcome the problems inherent in the multi-domain method. There are a number of hypersin-

gular approaches, and each approach has been developed independently by several groups, see

for example Bonnet and Bui (1993); Crouch and Selcuk (1992); Cruse (1988); Chang and Mear

(1995); Gray, Martha and Ingra�ea (1990); Guimar~aes and Telles (1994); Hong and Chen (1988);

Paulino (1995). Although successful, the common problem for these methods is that, when em-

ployed in conjunction with a collocation approximation, a smoothness constraint is necessarily

imposed on the boundary displacement (Gray 1991; Martin and Rizzo 1996). This di�erentiabil-

ity condition adds considerable complexity to the fracture algorithm. Higher order di�erentiable

interpolations, such as Overhauser elements (Walters et al. 1988; Hall and Hibbs 1988) or Her-

mite elements (Watson 1986; Rudolphi 1990) are di�cult to work with and are computationally

expensive. An alternative is to avoid the di�erentiability issue by using non-conforming elements,

i.e. collocating1 interior to the element instead of at the endpoints (e.g. Selcuk et al. 1994).

However, this adds signi�cantly to the number of unknowns, especially in three-dimensions, and

is therefore also quite expensive.

In this paper, further development of the symmetric Galerkin (SG) boundary integral

1To collocate interior to the element means to enforce the respective HBIE at one or more interior points of

the element.
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method (Hartman, Katz and Protopsaltis 1985; Maier and Polizzoto 1987; Sirtori et al. 1992)

for fracture mechanics problems is presented. The Galerkin approximation allows the use of

standard continuous elements, while the symmetric implementation reduces the computational

cost to that of collocation methods. This work focuses on discrete crack modeling applied to plane

orthotropic elastic problems. The hypersingular formulation for orthotropic solids is introduced

here, and techniques for improving the e�ciency of the SG fracture algorithm are presented.

The remaining sections of this paper are organized as follows. First, the governing equations

for the symmetric Galerkin analysis, considering orthotropic elasticity, are presented. Second, the

fracture algorithm is discussed, which includes the appropriate selection of the crack variables,

and issues concerning the computational e�ciency of the algorithm. Next, the evaluation of

singular integrals is described with emphasis on the isolation and cancellation of potentially

singular terms. Afterwards, example calculations are presented. The paper concludes with a few

remarks, followed by a discussion of directions for future research. The Appendix presents the

formulas for the kernel functions in the HBIE.

2 Symmetric Galerkin Analysis

The basic SG framework for 2D orthotropic elastic boundary value problems is introduced in

this section. Since the SG method employs both the BIE and the HBIE, these equations are

discussed here. The mathematical formulation is given �rst. Afterwards, some numerical issues

are presented. The actual fracture algorithm is developed in the next section.

2.1 Orthotropic Boundary Integral Equations

In order to present the hypersingular traction equation we briey review the boundary integral

formulation for two dimensional orthotropic elasticity presented by Rizzo and Shippy (1970). As

usual, let uj and �jk denote the components of the displacements and stresses. For plane stress,

the stress{strain relationship is given by

�11 = c11u1;1 + c12u2;2

�22 = c12u1;1 + c22u2;2 (1)

�12 = c66(u1;2 + u2;1) ;

where cij are material constants (sti�nesses). Moreover, the Navier{Cauchy equilibrium equa-

tions, in the absence of body forces, are

c11u1;11 + (c12 + c66)u2;12 + c66u1;22 = 0

c22u2;22 + (c12 + c66)u1;12 + c66u2;11 = 0 : (2)

The BIE for anisotropic elasticity has the same form as for the isotropic case, the di�erence

being on the fundamental solution. Thus, the BIE takes the usual form

uk(P ) =
Z
�
Ukj(P;Q) �j(Q) dQ�

Z
�
Tkj(P;Q) uj(Q) dQ ; (3)
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where uk(Q) and �k(Q) are the boundary displacement and traction vectors, respectively, and

Ukj(P;Q) is the fundamental solution, i.e. the displacement �eld at Q due to a point force at P

in an in�nite sheet of orthotropic material (Green 1943; Rizzo and Shippy 1970). This function,

in component form, is given by

U11(P;Q) =
1

�

hp
�1A

2
2 log(r1)�

p
�2A

2
1 log(r2)

i

U12(P;Q) =
1

�
[A1 A2 (�2 � �1)]

U21(P;Q) = U12(P;Q) (4)

U22(P;Q) =
1

�

"
A2

2 log(r2)p
�2

� A2
1 log(r1)p

�1

#
;

where the constants are de�ned by

� � 2� (�1 � �2) s22

�1 + �2 =
2s12 + s66

s22

�1 �2 =
s11
s22

(5)

Ak = s12 � �k s22

with "
c11 c12
c12 c22

#
=

"
s11 s12
s12 s22

#
�1

and c66 =
1

s66
: (6)

The distance and angle functions are de�ned by

r2k = (Q1 � P1)
2 +

1

�k
(Q2 � P2)

2 (7)

and

�k = tan�1
"

Q2 � P2p
�k (Q1 � P1)

#
; (8)

respectively, where the coe�cients �k are assumed to be real and positive. The traction funda-

mental solution Tkj(P;Q), in component form, is

T11(P;Q) =
1

�
n �R

 
A1p
�2 r22

� A2p
�1 r21

!
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1
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(10)
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where R = Q� P and n = n(Q) is the unit normal vector at Q. The parameter Mk is

Mk =
p
�k ny (Q1 � P1)� nxp

�k
(Q2 � P2) (11)

For a point P interior to the domain, the displacement equation (3) can be di�erentiated

with respect to P , the derivative moved underneath the integral sign, resulting in

uk;L(P ) =
Z
�
Ukj;L(P;Q) �j(Q) dQ�

Z
�
Tkj;L(P;Q) uj(Q) dQ (12)

or

uk;L(P ) �
Z
�
SkjL(P;Q) �j(Q) dQ�

Z
�
WkjL(P;Q) uj(Q) dQ : (13)

in which

SkjL = Ukj;L and WkjL = Tkj;L (14)

The formulas for the kernel functions SkjL and WkjL are somewhat lengthy and can be found in

the Appendix. The desired integral equation for surface traction can now be formed by combining

the equations for displacement derivatives according to Eq. (1),

�k(P ) =
Z
�
Ŝkj(P;Q) �j(Q) dQ�

Z
�
Ŵkj(P;Q) uj(Q) dQ ; (15)

where Ŝkj and Ŵkj are appropriate linear combinations of SkjL and WkjL, respectively. As

indicated above, this equation is strictly valid for an interior point P . However, it can be shown

that the limit as P approaches the boundary exists, and thus for P 2 �, the traction equation

is understood in this limiting sense. The boundary integral equations are usually written with

a geometry{dependent coe�cient multiplying the displacement and traction functions outside

the integrals. In the above formulation, this coe�cient has been absorbed into the integrals,

appearing automatically when the limit to the boundary evaluation is carried out (Lutz and Gray

1993). Aside from avoiding potential di�culties in evaluating this coe�cient (Rizzo, Shippy

and Rezayat 1985), this approach allows a uni�ed and direct treatment of the singular integrals

appearing in both the BIE (3) and the HBIE (15), and these equations remain valid for both

interior and boundary points.

2.2 Basic Symmetric Galerkin Procedure

The key to obtaining a symmetric coe�cient matrix is the symmetry properties of the kernel

functions (U, T, Ŵ, and Ŝ), combined with a Galerkin approximation. Galerkin di�ers from

collocation in that Eqs. (3) and (15) are satis�ed in an averaged sense, rather than at individual

points. Speci�cally, the weighting functions are chosen to be the basis shape functions  l (e.g.

linear: fl= 1; 2g; quadratic: fl= 1; 2; 3g) employed in the approximation of displacement and

traction on the boundary. Thus, the form of the displacement equation to be solved numerically

is Z
�
 l(P ) uk(P ) dP +

Z
�
 l(P )

Z
�
Tkj(P;Q) uj(Q) dQ dP �Z

�
 l(P )

Z
�
Ukj(P;Q) �j(Q) dQ dP = 0 ; (16)
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and similarly for the traction equation,Z
�
 l(P ) �k(P ) dP +

Z
�
 l(P )

Z
�
Ŵkj(P;Q) uj(Q) dQ dP �Z

�
 l(P )

Z
�
Ŝkj(P;Q) �j(Q) dQ dP = 0 : (17)

The additional boundary integration is required to obtain a symmetric matrix, as this

ensures that the source P and the �eld Q are treated on the same fashion. The last component

of the SG formulation is the choice of equation { the displacement BIE (16) is employed on the

surface with prescribed displacements (�u), and the traction BIE (17) is employed on the surface

with prescribed tractions (��). Note that for a well posed boundary value problem � = �u+�� .

After discretization, the resulting set of equations in matrix form can be written as

[H ]fug = [G ]f�g ; (18)

and in block matrix notation, these equations take the form"
H11 H12

H21 H22

# (
ubv
u�

)
=

"
G11 G12

G21 G22

# (
��
�bv

)
: (19)

The �rst row represents the BIE written on the �u surface, and the second represents the HBIE

on the �� surface. Similarly the �rst and second columns arise from integrating over �u and

�� surfaces. The subscripts in the vectors denote known boundary values (bv) and unknown (*)

quantities. Rearranging Eq. (19) into the form [A]fxg = fbg, and multiplying the hypersingular

equations by �1, one obtains"
�G11 H12

G21 �H22

# (
��
u�

)
=

(
�H11 ubv +G12 �bv
H21 ubv �G22 �bv

)
: (20)

The symmetry of the coe�cient matrix, G11 = GT
11, H22 = HT

22, and H12 = GT
21, now follows

from the symmetry properties of the kernel functions.

3 Symmetric Galerkin Fracture

A Symmetric Galerkin algorithm for fracture, in the context of two-dimensional potential theory,

has recently been presented by Gray, Balakrishna and Kane (1995). This method, e�ectively a

combination of the displacement discontinuity (Crouch and Star�eld 1983) and the dual BIE

(e.g. Gray, Martha and Ingra�ea 1990) ideas, employs the hypersingular equation on the crack

surface to solve for the jump in displacement across the fracture. Our goal herein is to discuss

techniques for improving the computational e�ciency of this approach, so we �rst provide a brief

review of this method. Moreover, in this work, the crack modeling approach is extended to plane

orthotropic elasticity.

Consider a 2D linear elastic orthotropic body which contains a crack, as illustrated by Fig-

ure 1. A comparison of three di�erent approaches for the BIE crack modeling is summarized in

Table 1. This Table shows the equations employed in each method and the crack variables. The

procedure for obtaining the symmetric-Galerkin formulation for fracture problems is explained
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Figure 1: A body B with a crack. The body has boundary � = �o + �c. Moreover, �o =
�o(u) + �o(�) and �c = �+

c + ��c .

Table 1: Equations employed in boundary integral crack modeling. The
numbers in parentheses indicate the levels of integration for 2D analysis.

Surface Collocation Displacement Symmetric
Discontinuity Galerkin

�o(u) BIE(1) BIE(1) BIE(2)
�o(�) BIE(1) BIE(1) HBIE(2)
�c BIE(1)& HBIE(1) HBIE(1) HBIE(2)

Crack variables u+ & u� � u � u
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below.

As shown in Table 1, in the dual equation boundary integral method, independent equations

for solving for the crack displacements on both sides are obtained by writing both standard and

hypersingular equations on the crack surfaces. This violates the Symmetric-Galerkin procedure,

as the boundary condition is invariably speci�ed traction and consequently only the traction

equation should be used. Symmetry of the coe�cient matrix is therefore not possible with the

dual equation method. Nevertheless, taking this approach as a starting point for a symmetric-

Galerkin fracture formulation, the resulting system of equations can be written in the block-

matrix form 2
64
h11 h12 h13
h21 h22 h23
h31 h32 h33

3
75
8><
>:


1

u2
u3

9>=
>; =

2
64
g11 g12 g13
g21 g22 g23
g31 g32 g33

3
75
8><
>:


̂1

�2
�3

9>=
>; : (21)

The blocking strategy, according to Figure 1, is as follows: the �rst row and column is

associated with the outer, non-crack boundary �o, while the subscripts 2 and 3 refer to the two

sides of the crack �+
c and ��c , respectively. The vector of unknowns on the outer boundary (�o)

is in general a mixture of displacement and traction, and is denoted by 
1. The corresponding

vector of prescribed boundary values is indicated by 
̂1. The second and third rows correspond

to the equations for traction and displacement, respectively, written on the crack surface. It is

assumed that the traction is speci�ed on the crack surfaces.

Note that although the coe�cient matrix in Eq. (21) is not symmetric, the upper 2 � 2

principal submatrix is, i.e. h11 = hT11, h22 = hT22, and h21 = hT12. This is a consequence of the basic

SG procedure, the traction equation being the appropriate choice on the fracture. In addition

to the symmetry, it is also important to observe that h13 = �h12 and h23 = �h22, a consequence
of the change in surface orientation in the (nonsingular) integration over the two sides of the

fracture. It can be shown that a symmetric coe�cient matrix results from changing variables on

the crack from displacement to jump in displacement (i.e displacement discontinuity),

�u = u2 � u3

�u = u2 + u3 : (22)

With this transformation, the left hand side of Eq. (21) takes the form2
64
h11 h12 0
hT12 h22 0
h31 h32 I=2

3
75
8><
>:


1

�u

�u

9>=
>; ; (23)

where I is the identity matrix. It therefore su�ces to solve the smaller symmetric 2 � 2 block

system for the unknowns f
1;�ug. If necessary, �u, and hence the displacements u2 and u3 on

the crack surfaces (see Figure 1), can be calculated in a post-processing step after f
1;�ug have
been determined. To this e�ect, the construction of the matrices h31 and h32 is needed, however,

no linear solution is required, as the coe�cient matrix of �u is the identity.

3.1 Computational e�ciency

In most applications of the SG procedure, the computational e�ciency derives from the algebraic

solution of the linear equations. For a direct solution of the linear system, the operation count
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is approximately N3=6, versus N3=3 for a non-symmetric matrix, where N refers to the matrix

order. Thus, for su�ciently large problems, the savings in this phase can more than balance the

added work inherent in the Galerkin formulation (Balakrishna, Gray and Kane 1994).

Exploiting symmetry in the matrix during the construction phase would be desirable, but

in general is not highly pro�table. Assume, for the sake of argument, that only the lower

triangular part of the coe�cient matrix is to be evaluated. In constructing a particular equation,

both integrals (one involving surface displacement, and one involving surface traction) in the

boundary integral equation must be evaluated. Although one integral could be skipped if these

contributions were destined for the upper triangle of the coe�cient matrix, the other integral

contributes to the right hand side and would still require evaluation. As the two integrals share

some computational overhead (setting up the geometry, computing distances, etc.), the amount

of work saved by skipping the one integral is, in general, not very signi�cant. This of course is

dependent upon the complexity of the Green's function, the more work involved in computing

the kernel function the more advantageous it would be to invoke the symmetry in the calculation.

The analysis of traction free cracks is the most common situation in practice, and in this

case the symmetry can be used e�ectively to reduce the computation time. As above, group

the non-crack (subscript 1) and crack (subscript 2) surfaces separately, and write the coe�cient

matrix in the form "
h11 h12
h21 h22

#
: (24)

Note that h11 and h22 are square and symmetric, while hT12 = h21. Thus, the calculation of

h12, which originates from the displacement integral in the traction equation, is not necessary.

Moreover, for a traction free crack, the traction integral in this equation does not contribute to

the right hand side vector. As a consequence, in constructing the �rst block row, there is no

need to integrate over the crack surface, clearly a signi�cant amount of computation that can be

avoided. Thus, the symmetry can be exploited by the simple procedure of placing the crack last

in the ordering of the boundary nodes.

Furthermore, the same argument applies to the symmetric h22 matrix. That is, any crack

integrations for the crack equations which only result in upper triangular matrix elements can

be skipped. Again this follows because there is no contribution to the right hand side vector.

However, to be computationally e�ective, it is necessary to skip an entire integration, i.e. an

element pair fEP ; EQg, where EP and EQ denote the P and Q elements, respectively. Thus, the

amount of savings that can be achieved is a function of the ordering of the crack nodes. To take

maximal advantage of the symmetry of h22 for three-dimensional problems, an optimal (or at

least near optimal) reordering strategy on the crack becomes an important issue. To this e�ect,

the techniques developed by Paulino et al. (1994a; 1994b) may be of advantage, especially for

three-dimensional problems. This question is currently under investigation.

It is expected that combining the above two observations can result in signi�cant com-

putational savings, especially for three dimensional problems with relatively large crack surface

area. Timing results for relatively small scale two-dimensional problems, to be discussed further

below, displayed roughly a 15% reduction in computation time (this was without using the sym-

metry of h22). Moreover, for crack propagation analysis, the new matrix elements which must

be calculated at every time step iteration only involve the crack, and this is precisely where the
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symmetry can be employed to advantage.

Finally, the above discussion on exploiting symmetry also applies to outer boundary seg-

ments for which the imposed boundary conditions are zero, either traction or displacement. This

is a common circumstance in practical engineering problems, and thus even further reductions in

computation time can be realized for many problems. As Symmetric-Galerkin is a competitive

algorithm for fracture analysis even without any of the above techniques, a fully optimized SG

algorithm should be highly e�cient.

4 Singular Integrals

A key part of any boundary integral algorithm is the evaluation of singular integrals. The

present SG implementation di�ers in two aspects from those reported in the literature, and thus

these issues are discussed below. We �rst present a slightly di�erent boundary limit process for

performing the integrations when the P and Q elements coincide, i.e. the coincident singular

integrations. This modi�cation is speci�c to the orthotropic Green's function, but the second

item, the isolation of potentially singular terms should be generally applicable for SG analysis.

The goal will be to provide enough information to describe the new algorithms, almost all of

the details will be omitted. In addition, the discussion of the limit process will be con�ned to

the hypersingular integral in the traction equation (15), i.e. the integral with kernel Ŵ . The

analysis of the remaining integrals is simpler and follows in a similar fashion.

It su�ces to assume a linear element,

Q(s) = (1� s)Ql + s Qm ; s 2 [0; 1]; (25)

interpolating the neighboring boundary nodes Ql and Qm. Singular integrals arising from higher

order curved elements can eventually be reduced to the same form as linear element integrals

(Gray 1993) and thus the same techniques apply.

4.1 Boundary Limit

The Galerkin formulation (see Eqs. (16) and (17)) requires integration over a pair of elements,

the outer P and inner Q integrals. For a given P element EP = E0, singular integrals arise when

the Q integration is coincident, namely EQ = EP , or when the EQ element is one of the two

adjacent elementsE�1 or E1. This is illustrated in Figure 2. The limit to the boundary procedure

is only required to de�ne the coincident integrals.

Referring to the Appendix, one veri�es that the hypersingular kernel consists of linear

combinations of functions of the form

F(P;Q) = (Qm � Pm) (Ql � Pl)

r4k
; (26)

where k; m; l = 1; 2. If a line integral of this function includes P = Q, the integral can be

de�ned by �rst moving the point P o� the boundary in the direction L, i.e.

P ! P � "L ; kLk = 1 ; (27)
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Figure 2: Illustration of the coincident (EQ = EP = E0) and adjacent (e.g. EP = E0; EQ = E�1)
singular integrations.

evaluating the integral, and then taking the limit " ! 0. The usual procedure is to move P

normal to the boundary, i.e. L = (nx; ny), as this results in the simplest integration. For the

orthotropic Green's function however, the distance function in the denominator is weighted in

the y component,

rk =

"
(Q1 � P1)

2 +
(Q2 � P2)

2

�k

# 1

2

; (28)

and in this case a normal limit direction is not optimal. By choosing the approach direction

L = (nx; � ny), rk takes the form

rk =
h
b2 (s� t)2 + b0 "

2
i 1
2 ; (29)

where s and t are the parameters for the Q and P integrations, respectively. The advantage of

this compared to a normal limit is that there is no linear term b1(s � t), and this considerably

simpli�es the resulting integration formulas. This simplicity translates into less computational

e�ort in evaluating the integrals.

Note that for a collocation approximation, singular integral computation time is not a

major issue. The analogous singular integrals are only evaluated once for each node, and thus

the total computational expense is relatively minor. In a Galerkin approximation, however, the

additional integration with respect to P means that these formulas are executed for each Gauss

point in the outer (numerical) quadrature. Maximizing the e�ciency of the integration formulas

is therefore more critical.

4.2 Cancelling of Singularities

Consider the adjacent singular integration with EP = E0, EQ = E�1, the singularity occurring

when P = Q = Q0, as shown in Figure 2. In evaluating this integral, it would be convenient

to replace the parameters fs; tg with polar coordinates f�; �g centered at Q0. This is desirable

because the troublesome part of the integral is at � = 0, and the � integration can be performed

analytically. However, this is not entirely possible, for the following reason.

The hypersingular integral is well de�ned because the boundary limit exists, independent

of limit direction. However, potentially singular terms, which eventually cancel, do arise in the
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integration, and it is important to ensure that these terms are removed from the calculation.

For the coincident integration discussed above, the Q integration over s produces terms which

are singular at the endpoints of the element, of the form 1=t and 1=(1 � t). The cancelling

contributions appear in the adjacent integrations { for the coincident fE0; E0g and adjacent

fE0; E�1g integrations, it is the 1=t term which cancels. However, removing this term is not

possible if polar coordinates are employed to the adjacent integration at the outset.

The remedy is simple, isolate the term responsible for producing the singular contribution.

The singular pointQ0 corresponds to s = 1 for theQ integration overE�1, and to t = 0 for P . The

only product of shape functions which causes any concern is therefore s(1� t) = s� st, all other
combinations are zero at Q0 and hence e�ectively balance the singularity in the kernel function.

The st term is harmless for the same reason, and thus this term and all other combinations of

shape functions are handled by the polar coordinate method mentioned above. This leaves only

s times the kernel function, and this is computed using a direct integration over s. The 1=t term

which appears is seen to cancel with the coincident integration, and consequently dropped.

5 Examples

Two examples are presented to validate the orthotropic symmetric Galerkin fracture algorithm.

Each of these examples involve a single interior crack, one straight (Figure 3(a)) and one inclined

at an angle � with the horizontal (Figure 3(b)). For both examples, plane stress state is consid-

ered. The crack has length 2a = 0.4, the plate has height 2H = 2.0 and width 2W = 1.0. The

remote applied traction is denoted by �a. Consistent units are used. For the second example

(Figure 3(b)), the angle � has been set equal to 45o. The elastic constants, which correspond to

average smeared-out properties of �breglass, are (Ghandi 1972):

E1 = 48:26 GPA

E2 = 17:24 GPA

�12 = 6:89 GPA

�12 = 0:291

For the examples, illustrated in Figure 3, the Cartesian coordinates of the bottom left

corner of the plate are (0,0), and those of the top right corner are (1,2). The straight crack

of Example 1 goes from (0.3,1.0) to (0.7,1.0), and the inclined crack of Example 2 goes from

(0.3586,0.8586) to (0.6414,1.1414). The remote applied traction is �a = 10 MPa.

The above two examples have been solved using the present SG-BEM formulation and

compared with the �nite element solution provided by the program FRANC: FRacture ANalysis

Code (Wawrzynek 1991). The parameter chosen for comparison purposes is the displacement

discontinuity �u along the crack.

Figures 4 and 5 illustrate the FEM solution for Examples 1 and 2, respectively. The mesh

for Example 1 has 768 nodes and 266 quadratic elements (six-noded triangles, T6, and eight-

noded quadrilaterals, Q8) and the mesh for Example 2 has 790 nodes and 276 elements (T6 and

Q8). Special quarter-point elements are used in the crack tip region, as illustrated by the rosette

of �nite elements around the crack tips. For the BEM, the outer boundary of the plate has

12
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Figure 3: Geometry and boundary conditions for a central crack in a plane orthotropic plate
under remote loading. (a) Example 1: horizontal crack; (b) Example 2: inclined crack.

been uniformly discretized with 60 standard linear elements. This discretization coincides with

the FEM boundary discretization shown in either Figure 4 or Figure 5; however, the BEM uses

linear elements and the FEM uses quadratic ones. Each face of the crack has been discretized

by 8 linear boundary elements, with a �ner discretization towards the crack tip.

Table 2 shows the results for the crack opening displacement (COD) for the crack of Ex-

ample 1 (Figure 4(a)). Because of symmetry, only the results for the left portion of the crack

are reported. The last column of this table is computed as

�u
�
(%) =

�u
�
(FEM)��u

�
(SG-BEM)

�u
�
(FEM)

100% (30)

The CODs obtained by both the SG-BEM and the FEM are in good agreement, the largest

discrepancy being less than 5%. For this problem, the crack sliding displacement (CSD) should

be zero (i.e. �ux = 0). The numerical values for both the SG-BEM and the FEM are of the

order of 10�8 or less, which shows that consistent solutions have been obtained.

Table 3 shows the results for the displacement discontinuity �u = (�ux; �uy) for the

crack of Example 2 (Figure 4(b)). As before, the results for �uy obtained by both the SG-BEM

and the FEM are in good agreement, the largest discrepancy being of 5.07%. However, the

results for �ux show larger relative discrepancy than the ones for �uy, especially for the nodes

which are the 1/4 point ones in the �nite element mesh. These nodes are very close to the crack

tip and therefore the results are very sensitive to the numerical discretization. Nevertheless,

note that the actual numerical values for �ux obtained by both methods are of comparable

magnitudes. Note that the �nite element discretization uses quadratic elements (T6 and Q8)

and singular crack tip elements; the boundary element discretization uses simpler linear elements

13



Figure 4: Finite element solution for a central crack in an orthotropic plate under remote tension
(768 nodes and 266 quadratic elements); solid line denotes the deformed con�guration and the
dashed line denotes the original con�guration.

Table 2: Crack Opening Displacement �uy for Example 1. The
solution is for half crack, starting at the left crack tip.

SG-BEM FEM
x y �uy (x10�3) �uy (x10�3) �uy(%)

0.3000 1.000 0.000000 0.000000 0.00
0.325 1.000 0.227131 0.230606 1.51
0.500 1.000 0.391940 0.411062 4.65
0.450 1.000 0.439092 0.460448 4.64
0.500 1.000 0.453433 0.476836 4.91
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everywhere on the mesh. To reduce the di�erence between the SG-BEM and the FEM results, a

�ner boundary element mesh should be used.

Figure 5: Finite element solution for an inclined crack in an orthotropic plate under remote
tension (790 nodes and 276 quadratic elements); solid line denotes the deformed con�guration
and the dashed line denotes the original con�guration.

6 Concluding Remarks

There are two primary reasons for considering a SG fracture algorithm. First, the Galerkin ap-

proximation allows analysis of the hypersingular traction equation with simple standard elements

(e.g. linear or quadratic). Di�erentiable interpolations or non-conforming approximations are

much more di�cult to work with and computationally expensive. Second, the symmetry pro-

vides the needed computational savings to compensate for the additional Galerkin integration.

It has been shown herein that crack problems can take special advantage of this symmetry {

integrating over the crack can be omitted when constructing the non-crack equations. For the

relatively simple 2D problems considered, invoking this feature reduced the computation time

by roughly 15%. It is therefore expected that the crossover point where SG becomes more e�-

cient than collocation, already at reasonably sized problems for non-crack geometries, occurs at

signi�cantly smaller problem size for fracture.

To further enhance the computational e�ciency for three-dimensional problems, it will be

necessary to exploit the symmetry of the principal submatrix associated with the crack (i.e.,

contributions to the crack equations from integrating over the crack). This brings up the in-

teresting question of near-optimal node reordering algorithms, and this issue is currently under

investigation.
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Table 3: Displacement discontinuity �u = (�ux ; �uy) for Example 2.

SG-BEM FEM
x y �ux(x10�4) �uy(x10�3) �ux(x10�4) �uy(x10�3) �ux(%) �uy(%)

0.3586 0.8586 0.000000 0.000000 0.000000 0.000000 0.00 0.00
0.3763 0.8763 -0.049903 0.163476 -0.065051 0.164245 23.29 0.47
0.4293 0.9293 -0.105063 0.283705 -0.113276 0.298861 7.25 5.07
0.4646 0.9646 -0.125796 0.318479 -0.139346 0.334257 9.72 4.72
0.5000 1.0000 -0.132743 0.329145 -0.145958 0.345614 9.05 4.77
0.5353 1.0353 -0.125730 0.318613 -0.139309 0.334217 9.75 4.67
0.5707 1.0707 -0.104960 0.283939 -0.113400 0.298794 7.44 4.97
0.6237 1.1237 -0.049838 0.163708 -0.064930 0.164171 23.24 0.28
0.6414 1.1414 0.000000 0.000000 0.000000 0.000000 0.00 0.00

A second issue requiring investigation is the critical area of crack tip approximation. Quar-

ter point elements have recently been employed within a non-conforming dual equation ap-

proximation (S�aez, Gallego and Dominguez 1995), but we are unaware of any special crack tip

implementation in conjunction with a Galerkin scheme. In particular, including a special tip

element with a SG approximation should be investigated. Finally, a recent result on the form of

the displacement in the vicinity of the tip (Gray and Paulino 1996) should be included in the

approximation.
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Appendix: HBIE Kernels for Orthotropic Elasticity

Tensor SkjL = Ukj;L

S111 =
1

�

"
�
p
�1A

2
2 (Q1 � P1 )

r1 2
+

p
�2A

2
1 (Q1 � P1 )

r2 2

#

S112 =
1

�

"
� A2

2 (Q2 � P2 )p
�1 r1 2

+
A2

1 (Q2 � P2 )p
�2 r2 2

#
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�
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�2 r2 2
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S211 = S121

S212 = S122

S221 =
1

�

"
A2

1 (Q1 � P1 )p
�1 r1 2

� A2
2 (Q1 � P1 )p

�2 r2 2

#

S222 =
1

�

"
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1 (Q2 � P2 )

�13=2 r1 2
� A2

2 (Q2 � P2 )

�23=2 r2 2

#
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TensorWkjL = Tkj;L

W111 =
1

�

(
nx A2p
�1 r1 2

� nx A1p
�2 r2 2

+ 2 n �R (Q1 � P1)

"
A1p
�2 r2 4

� A2p
�1 r1 4

#)

W112 =
1

�

(
ny A2p
�1 r1 2

� ny A1p
�2 r2 2

+ 2 n �R (Q2 � P2)
�

A1

�23=2 r2 4
� A2

�13=2 r1 4

�)

W121 =
1

�

(
�
p
�1 ny A2

r1 2
+

p
�2 ny A1

r2 2
+ 2 (Q1 � P1)

�
�F2A1

r2 4
+
F1A2

r1 4

�)

W122 =
1

�

(
nx A2p
�1 r1 2

� nx A1p
�2 r2 2

+ 2 (Q2 � P2)
�
�F2A1

�2 r2 4
+
F1A2

�1 r1 4

�)

W211 =
1

�

(
� ny A1p

�1 r1 2
+

ny A2p
�2 r2 2

+ 2 (Q1 � P1)
�
F1A1

�1 r1 4
� F2A2

�2 r2 4

�)

W212 =
1

�

�
nx A1

�13=2 r1 2
� nx A2

�23=2 r2 2
+ 2 (Q2 � P2)

�
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�12 r1 4
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��
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�
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�
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The parameters Fi (i = 1; 2) are

F1 =
p
�1 ny (Q1 � P1 )� nx (Q2 � P2 )p

�1

F2 =
p
�2 ny (Q1 � P1 )� nx (Q2 � P2 )p

�2

and

n �R = nx (Q1 � P1 ) + ny (Q2 � P2 )
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