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The problem of a point force acting in an unbounded, three-dimensional, isotropic
elastic solid is considered. Kelvin solved this problem for homogeneous materials.
Here, the material is inhomogeneous; it is `functionally graded'. Speci�cally, the
solid is `exponentially graded', which means that the Lam�e moduli vary exponen-
tially in a given �xed direction. The solution for the Green's function is obtained
by Fourier transforms, and consists of a singular part, given by the Kelvin solution,
plus a non-singular remainder. This grading term is not obtained in simple closed
form, but as single integrals over �nite intervals of modi�ed Bessel functions, and
double integrals over �nite regions of elementary functions. Knowledge of this new
fundamental solution for graded materials permits the development of boundary-
integral methods for these technologically important inhomogeneous solids.
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1. Introduction

Lord Kelvin obtained the Green's function G0 for a three-dimensional homogeneous
isotropic elastic solid in 1848 (Love 1927, x130). This gives the displacement at a
point when a point-force is acting at another point. G0 is used widely as a ba-
sic ingredient in integral-equation methods for solving elastostatic boundary-value
problems.

Kelvin's solution may be generalized in two directions. First, the elastic solid
could be anisotropic. In general, the three-dimensional Green's function cannot then
be found in closed form, although it can be reduced to the evaluation of a single
integral over a �nite interval; see (1.2) below. For references to the extensive litera-
ture on anisotropic Green's functions, see Nakamura & Tanuma (1997), Ting & Lee
(1997) and Pan & Yuan (2000). The incorporation of anisotropic Green's functions
into a boundary-integral analysis is described in the book by Schclar (1994).
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A second generalization is to consider inhomogeneous elastic solids. Very little
can be achieved, analytically, if the material properties are allowed to vary in a
smooth but arbitrary manner. For such media, it is usual to limit the analysis to
the construction of a `parametrix' (Garabedian 1964, p. 168) or `Levi function'.
These may be regarded as `approximate Green's functions': formally, the Green's
function G satis�es AG = �, whereas a Levi function L satis�es AL = �+R, where
R is a smooth `remainder' and A is the governing di�erential operator. Recently,
Pomp (1998) has devised a numerical algorithm for constructing Levi functions with
a small remainder. Chapter 2 of his book gives a good review of the known methods
for �nding Green's functions when the governing partial di�erential equation has
variable coe�cients.

Rather than looking for general techniques, we concentrate here on a speci�c
inhomogeneous material, one that has found application to functionally-graded ma-
terials. Thus, we assume that the material properties vary in a simple, explicit man-
ner. Here, we consider exponential variations, and suppose that the solid is isotropic
with Lam�e moduli given by

�(x) = �0 exp(2� �x) and �(x) = �0 exp(2� �x); (1.1)

where �0 and �0 are constants, and � is a given constant vector. We say that
the solid is exponentially graded in the direction of �. Evidently, Poisson's ratio is
constant for such a solid.

We show �rst that the Green's function G can be written as

G(x;x0) = expf�� � (x+ x0)g
�
G
0(x;x0) +G

g(x;x0)
	
;

where G0 is the Kelvin solution, and the additional grading term G
g is bounded. It

is given as a three-dimensional Fourier integral, and the main task is to evaluate this
integral. We show that it can be reduced to an explicit term, some single integrals
of modi�ed Bessel functions over a �nite interval, and some double integrals of
elementary functions over �nite regions.

It is of interest to compare the calculation for an exponentially-graded but
isotropic material with that for a homogeneous but anisotropic material. In the lat-
ter, the Fourier integral over � involves the vector r = x�x0. The integral simpli�es
by choosing spherical polar coordinates with r along the polar axis. Moreover, the
integrand contains [Q(�)]�1, where Qi`(�) = Cijk`�j�k and Cijk` are the constant
sti�nesses; thus, Q is homogeneous (Q(t�) = t2Q(�) for any t 6= 0), and this fact
simpli�es the calculation. Speci�cally, we have

G = (2�)�3
Z
[Q(�)]�1 exp(�i� � r) d�

= (2�)�3
ZZ

��2[Q(�̂)]�1 cos(�r cos') �2 d� d�̂

where r = jrj, � = j�j, � = ��̂ and we have observed that both G and Q are real.
Using spherical polar coordinates (�; '; �), where ' = 0 is the polar axis, we have
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d�̂ = sin' d' d� whence

G = (2�)�3 lim
X!1

Z �

0

S(')

Z X

0

cos(�r cos') d� sin' d'

=
1

8�3r
lim

X!1

Z 1

�1

S(cos�1 �)
sin (Xr�)

�
d�;

where S(') =
R 2�
0 [Q(�̂)]�1 d�. Note that we have evaluated the integral over � and

then put � = cos'. The integral over � is known as a Dirichlet integral ; its limiting
value as X !1 is �S(0) (Knopp 1951, x49C, p. 365), whence

G =
1

8�2r

I
[Q(�̂)]�1 d�; (1.2)

where the integral is taken around the unit circle, centred at the origin and lying
in the plane perpendicular to r. This derivation can be found on p. 412 of the book
by Synge (1957); other derivations (involving divergent integrals and generalized
functions) are available.

For the exponentially-graded material, we do not have homogeneity and we
have three distinguished directions, associated with �, r and �. It turns out to be
advantageous to use spherical polar coordinates with � along the polar axis.

The assumption (1.1) is typical in the engineering literature devoted to func-

tionally graded materials (FGMs). The papers by Hirai (1995) and Markworth et

al. (1995), and the books by Suresh &Mortensen (1998) and Miyamoto et al. (1999),
provide a good overview of current FGM research.

A knowledge of G for an exponentially-graded elastic solid permits the treatment
of a variety of problems involving FGMs. For example, problems of stress analysis
can be solved using boundary integral equations. Previous work in this area includes
the papers by Shaw & Gipson (1995) and by Azis & Clements (2001); the latter
paper considers Lam�e moduli proportional to (� �x+ c)2, where c is a constant.

Another class of problems concerns fracture mechanics. A review of crack prob-
lems in inhomogeneous media has been given by Erdogan (1998). Most work has
been devoted to two-dimensional problems with cracks aligned with the grading
direction; these limitations may be removed using the Green's function derived be-
low. Propagating cracks can also be modelled e�ectively using boundary integral
equations. This approach is advantageous for two main reasons. First, the crack-tip
singularity can be incorporated readily, leading to very accurate stress-intensity
factors. Second, the re-meshing task is much simpler as the crack propagates.

2. Governing equations

Consider an anisotropic inhomogeneous elastic solid with sti�nesses cijk`(x), where
a typical point has position vector x = (x1; x2; x3) with respect to O, the origin of
Cartesian coordinates. The Green's function G(x;x0) satis�es

@

@xj

�
cijk`(x)

@G`m

@xk

�
= ��im �(x� x0); i = 1; 2; 3; (2.1)

where �ij is the Kronecker delta and �(x) is the three-dimensional Dirac delta. As
usual, Gij(x;x

0) gives the i-th component of the displacement at x due to a point
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force acting in the j-th direction at x0. Also, the usual condition, cijk` = c`kji,
ensures that G is symmetric,

Gij(x;x
0) = Gji(x

0;x): (2.2)

Evaluating the left-hand side of (2.1) gives

cijk`(x)
@2G`m

@xj @xk
+

�
@

@xj
cijk`(x)

�
@G`m

@xk
= ��im �(x� x0); i = 1; 2; 3: (2.3)

We consider a particular inhomogeneous material in which the sti�nesses vary
exponentially, so that

cijk`(x) = Cijk` exp(2� �x); (2.4)

where � = (�1; �2; �3) and Cijk` and �i are given constants; the factor of 2 in the
exponent is inserted for later algebraic convenience. Hence

(@=@xj)cijk`(x) = 2Cijk` �j exp(2� �x) = 2�j cijk`(x) (2.5)

and so (2.3) becomes

Cijk`
@2G`m

@xj @xk
+ 2�j Cijk`

@G`m

@xk
= ��im exp(�2� �x) �(x� x0)

= ��im exp(�2� �x0) �(x� x0) (2.6)

for i = 1; 2; 3. Note that we can replace the right-hand side of (2.6) by

��im exp(�� � [px+ p0x0]) �(x� x0); (2.7)

where p and p0 are any constants that satisfy the constraint p+p0 = 2; this exibility
will be exploited soon.

We can write (2.6) as

cijk`(x
0)

@2G`m

@xj @xk
+ 2�j cijk`(x

0)
@G`m

@xk
= ��im �(x� x0); i = 1; 2; 3;

which we recognize as (2.3) with the variable coe�cients `frozen' at x = x0, having
used (2.5). We remark that Pomp's algorithm (1998, x2.4) begins by freezing the
coe�cients of the second-order derivatives only.

Alternatively, we may work with (2.6) directly. We introduce G0, the Green's
function for a homogeneous solid with constant sti�nesses Cijk` , de�ned by

Cijk`
@2G0

`m

@xj @xk
= ��im �(x� x0); i = 1; 2; 3: (2.8)

Comparing these equations with (2.6) suggests writing

G(x;x0) = exp(�2� �x0)
�
G
0(x;x0) +G

1(x;x0)
	
; (2.9)
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whence G1 is found to satisfy

Cijk`
@2G1

`m

@xj @xk
+ 2�j Cijk`

@G1
`m

@xk
= �2�j Cijk`

@G0
`m

@xk
(2.10)

for i = 1; 2; 3. This is a system of three coupled second-order partial di�erential
equations, with constant coe�cients. However, the decomposition (2.9) has a dis-
advantage: the symmetry property (2.2) is not inherited by G1. Thus, we change
the right-hand side of (2.6), using (2.7) with p = p0 = 1, giving

Cijk`
@2G`m

@xj @xk
+ 2�j Cijk`

@G`m

@xk
= ��im expf�� � (x+ x0)g �(x� x0); (2.11)

and we replace (2.9) by

G(x;x0) = expf�� � (x+ x0)g
�
G
0(x;x0) +G

g(x;x0)
	
; (2.12)

so that

Gg
ij(x;x

0) = Gg
ji(x

0;x):

To �nd an equation for the grading term G
g , we simply substitute (2.12) in (2.11),

making use of (2.8); the result is

Cijk`
@2Gg

`m

@xj @xk
+ Li`G

g
`m(x;x

0) = �Li`G
0
`m(x;x

0) (2.13)

for i = 1; 2; 3, where the �rst-order di�erential operator Li` is de�ned by

Li` = (Cijk` � Cikj`)�j(@=@xk)� Cijk`�j�k:

3. Fourier transforms

We treat the system (2.13) using three-dimensional Fourier transforms, which we
de�ne by

Ffug = bu(�) = Z
u(x) exp(i � �x) dx;

F�1fbug = u(x) = (2�)�3
Z bu(�) exp(�i � �x) d�:

Thus, we obtain

fQi`(�) +Bi`(�; �)g bGg
`m(�;x

0) = �Bi`(�; �) bG0
`m(�;x

0);

where

Qi`(�) = Cijk`�j�k and Bi`(�; �) = i(Cijk` � Cikj`)�j�k + Cijk`�j�k:

Note that if we de�ne a complex vector  by  = � + i�, then

Qi` +Bi` = Cijk`jk (3.1)
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where the overbar denotes complex conjugation:  = � � i�.
From (2.8), we have

Qi`(�) bG0
`m(�;x

0) = �im exp(i � �x0)

whence

bGg
`m(�;x

0) = E`m(�; �) exp(i � �x0)

where

E(�; �) = �fQ(�) +B(�; �)g�1B(�; �) [Q(�)]�1: (3.2)

Inverting the Fourier transform, we obtain

G
g(x;x0) = (2�)�3

Z
E(�; �) exp(�i r � �) d� (3.3)

where r = x� x0. It remains to evaluate this three-dimensional integral over �.
We note a few properties of E. First, (2.2) implies that

Eij(�; �) = Eji(�;��):

Second, as Gg is real, we have

E(�; �) = E(�;��):

Third, as a useful check on calculations, we note that B(�; �) = Q(�), whence
E(�; �) = � 1

2 [Q(�)]
�1.

4. Isotropy

If the underlying homogeneous medium is isotropic, we have

Cijk` = �0�ij�k` + �0 (�ik�j` + �i`�jk) ;

where �0 and �0 are the (constant) Lam�e moduli. Note that �0=�0 = 2�=(1� 2�),
where � is Poisson's ratio. From (2.4), the corresponding graded medium has Lam�e
moduli given by

�(x) = �0 exp(2� �x) and �(x) = �0 exp(2� �x);

and so it has the same constant Poisson's ratio, �.
We readily obtain

Qi`(�) = �0
�
�2�i` + (1� 2�)�1�i�`

	
and

Q�1i` (�) = (�0�
4)�1

�
�2�i` � [2(1� �)]�1�i�`

	
;

where �2 = j�j2; see, for example, Mura (1982, eqn. (3.33)). Similarly,

Bi`(�; �) = �0
�
�2�i` + (1� 2�)�1[�i�` + (4� � 1) i (�i�` � �`�i)]

	
;
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where �2 = j�j2.
Let C = � ��, � = (1 � 2�)�1, � = (1 � �)�1 and � = 4� � 1. Then, we �nd

that �
BQ

�1
�
`m

= ��4
�
�2�2�`m + 1

2��`�m(i��C � �2) + ��2�`�m

� i���2�`�m + 1
2��`�m(i��

2 � �C)
	
: (4.1)

Using (3.1), we have

(Q+B)ij = �0
�
2�ij + 2��ij + ij

	
where 2 = jj . Then, using a general result given in Appendix A, we obtain

(Q+B)�1j` = (�0
2�)�1

�
��j` �

1
2��j�`(

2 + 8��2)� 1
2��j�`(

2 + 8��2)

+ 1
2��j�`(8�C + i�2) + 1

2��j�`(8�C � i�2)
	
; (4.2)

where C = � �� = �� cos �,

� = �4 + 2�2�2q + �4 and q = 1+ 2�� sin2 �:

Then, a lengthy calculation, using (3.2), (4.1) and (4.2), gives

Ej`(�; �) = �(�0
2�4�)�1

�
�2�2��j` +

1
2�
j`

	
(4.3)

where


j`(�; �) = A�j�` + B�j�` + B�j�` + C�j�`; (4.4)

A = �4(2 + 8��2)� 2�; B = ��4(8�C + i�2) and C = �4(2 + 8��2):

5. The triple integral

There are three vectors in the triple integral (3.3), namely, r, � and �. We can
regard r and � as �xed, and integrate over � using spherical polar coordinates.

From (4.3), we have

Ej` = E �j` +Hj`; (5.1)

where

E = ��2(�0
2�2)�1 and Hj` = � 1

2�(�0
2�4�)�1
j`:

Thus, there are two contributions to Gg , coming from the two terms on the right-
hand side of (5.1); we consider them separately.

(a) The �rst term

We can easily evaluate the contribution due to E, using spherical polar coordi-
nates (�; '; �), with the polar axis (' = 0) in the direction of r. Thus, we obtain

1

(2�)3

Z
E exp(�ir � �) d� =

��2

(2�)2�0

Z 1

0

1

2�2

Z �

0

e�i�r cos' sin' d' �2 d�

=
��2

2�2�0r

Z 1

0

sin �r

�(�2 + �2)
d�

= �(4��0r)
�1
�
1� e��r

�
; (5.2)

using a standard contour-integral method for the �-integral.
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(b) The second term

The second term on the right-hand side of (5.1) is more complicated. In order
to treat this term, it is better to take � as de�ning the polar axis of spherical
coordinates (not r, as is commonly done). The reason for this choice is that we
have already introduced �, the angle between � and � (� �� = �� cos �), and this
angle appears in � and C.

Let n and m be any two mutually perpendicular unit vectors in the plane
perpendicular to �. Let � = ��̂, so that fn;m; �̂g forms an orthonormal right-
handed triad. In terms of the global, �xed, Cartesian coordinates, we have n = (ni),

m = (mi) and �̂ = (�̂i). For example, we can take

n = ��10 (�3; 0;��1) and m = (��0)
�1(��1�2; �

2
0 ;��2�3)

provided �0 � (�21 + �23)
1=2 6= 0.

Let (�; �; �) be the spherical polar coordinates of the point at �, so that

� �n = � sin � cos�; � �m = � sin � sin� and � � �̂ = � cos �:

Similarly, let (r;�;�) be the spherical polar coordinates of the point at r, so that

r �n = r sin� cos�; r �m = r sin� sin� and r � �̂ = r cos�:

Hence, putting X = r sin� and Z = r cos�, we obtain

r � � = �X sin � cos (�� �) + �Z cos �:

The �rst step is to integrate over �. Extracting the dependence on �, we see
that 
j`, de�ned by (4.4), can be written as


j` = 
0
j` +
1

j` cos�+ e
1
j` sin�+
2

j` cos 2�+ e
2
j` sin 2�

where


0
j` = 1

2A(njn` +mjm`)�
2 sin2 � +

�
A�2 cos2 � +

�
B + B

�
C + C�2

	
�̂j�̂`;


1
j` = 1

2A(nj �̂` + �̂jn`)�
2 sin 2� +

�
Bnj�̂` + B�̂jn`

�
�� sin �;

e
1
j` = 1

2A(mj �̂` + �̂jm`)�
2 sin 2� +

�
Bmj�̂` + B�̂jm`

�
�� sin �;


2
j` = 1

2A(njn` �mjm`)�
2 sin2 �;e
2

j` = 1
2A(njm` +mjn`)�

2 sin2 �:

Then, as we can integrate over any interval of length 2�, we can useZ �

��

e�i�X sin � cos (���)

�
cosn�

sinn�

�
d� = 2�(�i)nJn(�X sin �)

�
cosn�

sinn�

�
;

where Jn(w) is a Bessel function. HenceZ �

��


j` exp (�ir � �) d� = 2� e�i�Z cos � fRj`(�; �) � i Ij`(�; �)g ;
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where

Rj`(�; �) = 
0
j` J0(�X sin �)� [
2

j` cos 2� + e
2
j` sin 2�] J2(�X sin �)

and

Ij`(�; �) = [
1
j` cos� + e
1

j` sin�] J1(�X sin �):

Next, consider the integration over �. As

Rj`(�; � � �) = Rj`(�; �) and Ij`(�; � � �) = �Ij`(�; �);

we �nd thatZ �

0

Z �

��


j` exp(�ir � �)
sin �

�
d� d�

= 4�

Z �=2

0

�
Rj`(�; �) cos (�Z cos �) + Im

�
Ij`(�; �) e

�i�Z cos �
		 sin �

�
d�;

which is evidently real. If we put

sj = nj cos� +mj sin�;

we see that

Im
�
Ij` e

�i�Z cos �
	

= Im fIj`g cos(�Z cos �)�Re fIj`g sin(�Z cos �)

=
�
1
2 (sj �̂` + �̂js`)(2�

2q + �2)�2 sin 2� sin(�Z cos �)

� �(sj �̂` � �̂js`)�
3� sin � cos(�Z cos �)

	
�22 J1(�X sin �);

which is an even function of �; Rj` is also an even function of �.
Finally, consider the integration over �. The order of integration can be inter-

changed (as the relevant integrals are absolutely convergent), and so we obtain

1

(2�)3

Z
Hj` exp(�ir � �) d� =

���

8�2�0

Z �=2

0

Mj`(�) sin � d�; (5.3)

where

Mj`(�) =
1

�

Z 1

�1

�
Rj` cos (�Z cos �) + Im

�
Ij` e

�i�Z cos �
�	 d�

�22�

=
1

�

Z 1

�1

�
Rj` + i Ij`

�
ei�Z cos � d�

�22�
:

Explicitly, if we put

k = �Z cos � = �r cos � cos�; K = �X sin � = �r sin � sin� � 0;

� = �x and D(x) = x4 + 2x2q + 1;
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we can express Mj` as

Mj` =
2X

n=0

M
(n)
j` + fM (1)

j` (5.4)

where

M
(n)
j` =

Z 1

�1

fn(x) Jn(Kx) eikx

(x2 + 1)D(x)
dx; n = 0; 2; (5.5)

M
(1)
j` =

Z 1

�1

f1(x)

D(x)
J1(Kx) eikx dx and fM (1)

j` =

Z 1

�1

~f1(x)

D(x)
J1(Kx) eikx dx:

Here, the integrands contain polynomials in x, de�ned by

f0(x) = 1
2f8�x

4 � (x2 + 1)(2x2q + 1)g(njn` +mjm`) sin
2 �

+
�
8�x4 sin2 � + (x2 + 1)[x2 � (2x2q + 1) cos2 �]

	
�̂j �̂`;

f1(x) = �x3�(sj �̂` � �̂js`) sin �;

~f1(x) = � 1
2 i(sj �̂` + �̂js`)(2x

2q + 1) sin 2�;

f2(x) = � 1
2 [8�x

4 � (x2 + 1)(2x2q + 1)]
�
nj(n` cos 2� +m` sin 2�)

+mj(n` sin 2��m` cos 2�)
	
sin2 �:

We have written Mj` as (5.4) because M
(n)
j` are all even functions of k whereasfM (1)

j` is an odd function of k. Hence, when we consider methods for evaluatingMj`,
we can assume, without loss of generality, that

k � 0 and K � 0:

(c) Evaluation of Mj`

Sometimes, we can evaluate integrals such as M
(n)
j` directly using the calculus

of residues. For example, considerZ
�

fn(z) Jn(Kz) eikz

(z2 + 1)D(z)
dz; n = 0; 2;

where � is a closed contour in the complex z-plane to be chosen later. The integrand
has simple poles at

z = �iys; s = 0; 1; 2;

where

y0 = 1; y1 =

q
q +

p
q2 � 1; y2 =

q
q �

p
q2 � 1

and q = 1 + 2�� sin2 �.
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Now, as z !1, we have

fn(z)
�
(z2 + 1)D(z)

	�1
= O(z�2); (n = 0; 2)

and Jn(Kz) � f2=(�K)g
1=2

z�1=2 cos
�
Kz � 1

2n� �
1
4�
�
. This suggests that the

choice of method for evaluating Mj` will depend on the sign of

k �K = �r cos (� +�):

If k � K � 0, we can take � = SR [ LR, where SR is a semi-circular contour
in the upper half of the z-plane, of radius R, and LR is a piece of the real axis.
There is no contribution from SR as R ! 1, because the exponential growth of
the Bessel functions is dominated by the exponential decay of eikz . Proceeding in
the standard way, we calculate the residues at the three poles within �, and obtain

M
(n)
j` = 2�i

2X
s=0

M(n)
s Jn(iKys) e

�kys ; n = 0; 2; (5.6)

where

M
(n)
0 =

fn(i)

2iD(i)
and M(n)

s =
fn(iys)

(1� y2s)D
0(iys)

for s = 1; 2;

we have D(i) = �4�� sin2 � and D0(iys) = 4iys(q � y2s) for s = 1; 2.
The expression (5.6) is real, because f0(iy) and f2(iy) are real when y is real,

J0(iy) = I0(y) and J2(iy) = �I2(y), where In(w) is a modi�ed Bessel function.
Similarly,

M
(1)
j` = 2�i

2X
s=1

M(1)
s J1(iKys) e

�kys and fM (1)
j` = 2�i

2X
s=1

fM(1)
s J1(iKys) e

�kys ;

(5.7)

where

M(1)
s =

f1(iys)

D0(iys)
and fM(1)

s =
~f1(iys)

D0(iys)
:

Note that the expressions (5.7) are real because f1(iy) and ~f1(iy) are pure imaginary
and J1(iy) = i I1(y).

If 0 � k < K, the Bessel functions are dominant. There are some standard
tricks for dealing with such situations. One involves the identity

Jn(Kz) = 1
2

n
H(1)
n (Kz) +H(2)

n (Kz)
o
; (5.8)

where H
(1)
n (w) and H

(2)
n (w) are Hankel functions. (This is analogous to writing

cos z = 1
2 (e

iz + e�iz).) However, methods based on (5.8) seem to fail here.
Instead, we proceed indirectly, and use a method suggested by Watson (1944,

p. 425) in which the Bessel function is replaced by one of its integral representations;
for even n, we choose

Jn(Kx) =
2

�

Z �=2

0

cos (Kx sin �) cosn� d�:
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If we substitute this expression in (5.5) and interchange the order of integration,
we obtain

M
(n)
j` =M+ +M�; n = 0; 2;

where

M� =
1

�

Z �=2

0

cosn�

Z 1

�1

fn(x)

(x2 + 1)D(x)
eix(k�K sin �) dx d�:

The two inner integrals over x are easily evaluated by residues. As k+K sin � > 0,
we can always evaluate M+ using a semi-circular contour in the upper half-plane.
However, k �K sin � will change sign if k < K.

As a check, suppose �rst that k � K � 0. Then, we obtain

M� = 2i

2X
s=0

M(n)
s e�kys

Z �=2

0

e�Kys sin � cosn�d�: (5.9)

When these are combined, using

2

Z �=2

0

cosh (Kys sin �) cosn� d� = �in In(Kys); n even, (5.10)

we recover (5.6).
Suppose, now, that 0 � k < K. De�ne �0 by k = K sin �0, with 0 � �0 <

1
2�.

Then

M� =
1

�

Z �0

0

cosn�

Z 1

�1

fn(x)

(x2 + 1)D(x)
eix(k�K sin �) dx d�

+
1

�

Z �=2

�0

cosn�

Z 1

�1

fn(x)

(x2 + 1)D(x)
e�ix(K sin ��k) dx d�:

Evaluate the �rst x-integral as before, and evaluate the second x-integral using a
semi-circular contour in the lower half-plane. As fn(x) and D(x) are even functions
of x, we �nd that

M� = 2i

2X
s=0

M(n)
s

�
e�kys

Z �0

0

eKys sin � cosn� d�

+ ekys
Z �=2

�0

e�Kys sin � cosn� d�

�

= 2i

2X
s=0

M(n)
s

�
e�kys

Z �=2

0

eKys sin � cosn� d�

+ 2

Z �=2

�0

sinh (ys[k �K sin �]) cosn� d�

�
:
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The �rst integral on the right-hand side is exactly the same as in (5.9), obtained
there when k � K. Thus, for any non-negative choices of k and K, we have

M
(n)
j` = 2�i

2X
s=0

M(n)
s

�
e�kys in In(Kys)

+
2

�
H(K � k)

Z �=2

�0

sinh (ys[k �K sin �]) cosn� d�

�
; (5.11)

where H(x) is the Heaviside unit function and n = 0; 2.

Similar calculations succeed for M
(1)
j` and fM (1)

j` . We use

J1(Kx) =
2

�

Z �=2

0

sin (Kx sin �) sin � d�:

If k � K � 0, we recover (5.7), making use of

2

Z �=2

0

sinh (Kys sin �) sin � d� = �I1(Kys): (5.12)

If 0 � k < K, we obtain

M
(1)
j` = 2�

2X
s=1

M(1)
s

�
�e�kys I1(Kys)

+
2

�
H(K � k)

Z �=2

�0

cosh (ys[k �K sin �]) sin � d�

�
: (5.13)

There is an identical formula for fM (1)
j` : replace M

(1)
s with fM(1)

s .
The remaining integrals in (5.11) and (5.13) cannot be evaluated in closed form.

However, we have succeeded in replacing in�nite integrals of Bessel functions by
�nite integrals of exponentials.

We now collect up the results for Mj` and substitute in (5.3), taking account of
the fact that k will be negative when 1

2� < � < �. Let �m =
�� 1
2� ��

��. De�ne �m
by jkj = K sin �m, with 0 � �m < 1

2�. Then, we obtain

Z
Hj` exp(�ir � �)

d�

(2�)3
=

���

4��0

2X
s=0

2X
n=0

Z �=2

0

R(n)
s (�) e�jkjys In(Kys) sin � d�

�
��

2�2�0

2X
s=0

Z �=2

�m

R(0)
s sin �

Z �=2

�m

sinh	s d� d�

+
��

2�2�0

2X
s=0

Z �=2

�m

R(2)
s sin �

Z �=2

�m

sinh	s cos 2� d� d�

+
��

2�2�0

2X
s=1

Z �=2

�m

R(1)
s sin �

Z �=2

�m

cosh	s sin � d� d�;
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14 P. A. Martin, J. D. Richardson, L. J. Gray and J. R. Berger

where

	s(�; �) = ys(jkj �K sin �) = Kys(sin �m � sin �);

R(0)
s = iM(0)

s ; R(2)
s = �iM(2)

s ; s = 0; 1; 2;

R
(1)
0 = 0; R(1)

s = �
�
M(1)

s + fM(1)
s sgn(k)

�
; s = 1; 2:

In these formulas, R
(n)
1 , R

(n)
2 , k, K, y1, y2 and �m all depend on �. All of the

integrals are real.
Eight double integrals remain, but this number can be reduced to six, using

cos 2� = 2 cos2 � � 1 and an integration by parts:Z �=2

�m

sinh	s cos 2� d� =
2 cos�m
Kys

�
2

Kys

Z �=2

�m

cosh	s sin � d� �

Z �=2

�m

sinh	s d�:

6. Discussion and conclusion

The Green's function (or fundamental solution) for an exponentially-graded elastic
solid can be written as

G(x;x0) = expf�� � (x+ x0)g
�
G
0(x;x0) +G

g(x;x0)
	
;

where G0 is the Kelvin solution and the vector � gives the grading direction and
magnitude. We have shown that the triple Fourier integral de�ning G

g can be
reduced to: an explicit term, given by (5.2); �nite single integrals of modi�ed Bessel
functions; and �nite double integrals of elementary functions. As this grading term
G
g is bounded as jx � x0j ! 0 (the singularity is contained within the Kelvin

solution), having it available only as a computable quantity is not an impediment
for a boundary-integral implementation.

Given that we have to evaluate some double integrals, it may be preferable,
computationally, to replace the modi�ed Bessel functions In by their integral rep-
resentations, (5.10) or (5.12).

Alternatively, we can express the double integrals as in�nite series of single
integrals, using

cosh (Kys sin �) = I0(Kys) + 2

1X
n=1

(�1)nI2n(Kys) cos 2n�

and

sinh (Kys sin �) = 2

1X
n=0

(�1)nI2n+1(Kys) sin (2n+ 1)�;

as these Fourier expansions make the �-integrals trivial. However, this is unlikely
to yield a good computational strategy.

A second alternative is to use the Bauer expansion for the exponential in (3.3),
namely

exp(�i r � �) = 4�

1X
n=0

(�i)njn(�r)

nX
m=�n

Y m
n (�̂)Y m

n (r̂);
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where jn is a spherical Bessel function and Y m
n is a spherical harmonic (Watson

1944, x11.5). This expansion separates the dependence on �, � and �. Moreover, the
�-integral is simple, and shows that only those values of m with jmj � 2 contribute.
The subsequent integrals are of the formZ 1

0

Z �

0

g(�; �) jn(�r)P
m
n (cos �) d� d�; n = 0; 1; 2; : : : ;

where g is known and Pm
n is an associated Legendre function. These integrals seem

to be very complicated, so we did not pursue this approach further.
Further work is needed in order to devise e�cient numerical algorithms for the

evaluation of the remaining integrals de�ning Gg . This work is in progress.

Research at ORNL was supported by the Applied Mathematical Sciences Research Pro-
gram of the O�ce of Mathematical, Information, and Computational Sciences, US Depart-
ment of Energy, under contract DE-AC05-00OR22725 with UT-Battelle, LLC. J. R. Berger
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Appendix A. A matrix inversion

Let A be an n� n matrix, with entries given by

Aij = a�ij + bij + cij :

Then, if it exists, the inverse matrix has the form

A�1jk = A�jk +Bjk + Cjk +Djk +Ejk:

Multiplication gives 15 terms, which combine to give

AijA
�1
jk = aA�ik + ikf(a+ b2)B + bEG + bAg+ ikf(a+ c2)E + cBGg

+ ikf(a+ c2)C + cDG + cAg+ ikf(a+ b2)D + bCGg;

where 2 = jj and G = jj . As we want AA
�1 = I, we obtain

Z

�
B

E

�
=

�
�bA

0

�
; Z

�
D

C

�
=

�
0

�cA

�

and aA = 1, where

Z =

�
a+ b2 bG

cG a+ c2

�

is a complex 2� 2 matrix with

Z � detZ = (a+ b2)(a+ c2)� bcjGj2;

which is real if a, b and c are real; writing j = �j + i�j , we see that

Z = [a(b+ c) + 4bc�2 sin2 �]�2 + a2 + a(b+ c)�2;
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where �2 = �j�j , �
2 = �j�j and � �� = �� cos �. So, if Z 6= 0, we can solve for B

and E, and for D and C, whence

A�1jk = (aZ)�1
�
Z�jk � b(a+ c2)jk � c(a+ b2)jk + bc(Gjk + Gjk)

	
= (aZ)�1

�
Z�jk � [a(b+ c) + 4bc�2]�j�k � [a(b+ c) + 4bc�2]�j�k

+ 4bc��(�j�k + �k�j) cos � + ia(b� c)(�j�k � �k�j)g
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