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SUMMARY

The boundary integral equation for the axisymmetric Laplace equation is solved by employing modified
Galerkin weight functions. The alternative weights smooth out the singularity of the Green’s function
at the symmetry axis, and restore symmetry to the formulation. As a consequence, special treatment
of the axis equations is avoided, and a symmetric-Galerkin formulation would be possible. For the
singular integration, the integrals containing a logarithmic singularity are converted to a non-singular
form and evaluated partially analytically and partially numerically. The modified weight functions,
together with a boundary limit definition, also result in a simple algorithm for the post-processing of
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1. INTRODUCTION

This paper presents a Galerkin boundary integral implementation for the three-dimensional
axisymmetric Laplace equation. Beginning in the mid-1970s [1–3], collocation solutions of
integral equations for axisymmetric problems have been extensively considered in the literature
[4]. Recent work has focused on axisymmetric elasticity [5–8], in particular for fracture and
contact analysis. Although the Galerkin approach has probably been applied to solve axisym-
metric boundary integral equations, we have been unable to locate any papers on this subject.

One key aspect in a boundary integral formulation for an axisymmetric problem is that the
Green’s function has a different singular behaviour when the source point is on the symmetry
axis. For a point off the axis, the Green’s function represents (rotating around the symmetry
axis), a ring source in three dimensions. However, for a point on the axis, the ring source
degenerates to a single point, and thus some difference in behaviour is to be expected.

The consequences for a collocation approximation are significant. In a standard collocation
analysis, an equation is written with the source point on the symmetry axis, and thus the
singular integration for this equation is necessarily different from that in other equations.
This adds an additional complication to the analysis, and a variety of techniques have been
employed, including the use of a different fundamental solution on the axis (see Reference [7]
and references therein). While having to work with a second Green’s function clearly involves
additional work when implementing the method, this axis solution is, on the other hand, a
simpler function than the general expression.

One of the goals of the present work is to demonstrate that, by using a Galerkin technique, no
special treatment is required at the axis. This comes about partly due to the weak formulation,
as no equation is written ‘directly’ at the axis, and partly due to the use of modified Galerkin
weighting functions. The weight functions employed herein are in fact zero at the axis, which
effectively counterbalances the different behaviour of the Green’s functions at the axis. This
greatly simplifies the on-axis singular integration analysis, for both first- and second-order
derivatives of the Green’s function. Moreover, an additional important benefit of the modified
weight functions is that they restore symmetry to the formulation, permitting a symmetric-
Galerkin formulation [9].

The axisymmetric Green’s functions, given in terms of complete elliptic integrals, also dif-
fer from their standard two-dimensional counterparts in that there is a logarithm singularity
in all kernel functions. This integrable singularity obviously requires an appropriate numeri-
cal treatment, and this is impeded by the complicated form of these weakly singular terms.
A second aim of this work is to propose a hybrid analytic/numeric method for the evaluation of
these singular integrals. The method is based upon reformulating the integral as a non-singular
double integral, as in Reference [10], and then evaluating one part of the integral analytically.

Our primary motivation in pursuing this work was to solve moving boundary problems, and
in these simulations the surface gradient of the potential is the quantity of interest. A standard
boundary integral representation of the gradient involves second-order derivatives of the Green’s
function, and moreover requires a complete integration over the boundary (see Reference [11]
for a discussion of boundary integral gradient evaluation methods). Herein we show that the
boundary limit approach in References [12, 13] is advantageous, in that all of the complexity
of the axisymmetric kernel functions disappears: the kernels for gradient evaluation are no
more difficult than for the simple two-dimensional Laplace equation. Moreover, the complete
boundary integration can be reduced to considering only the coincident singular integration.
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We focus on the analysis of the integral equation for surface potential �, ∇2� = 0. However,
we expect that these techniques will apply directly to the hypersingular equation for surface
flux, and moreover, to the much more complicated axisymmetric formulation for elasticity
[4, 6–8, 14].

2. AXISYMMETRIC FORMULATION

The derivation of the boundary integral formulation for the three-dimensional axisymmetric
Laplace equation can be found in many books, e.g. References [15, 16], the presentation herein
follows the notation in Reference [17]. The basic procedure is to start with the standard
boundary integral equation for surface potential [16, 18], replace the Cartesian co-ordinates
(x, y, z) with cylindrical co-ordinates (r, �, z), and integrate with respect to �. As the boundary
potential and flux are independent of �, the interior and exterior integral equations for the
potential take the form

�(r̂, ẑ) =
∫

�
r

(
��

�n
(r, z)G(r̂, ẑ; r, z) − �(r, z)

�G

�n
(r̂, ẑ; r, z)

)
d�rz

0 =
∫

�
r

(
��

�n
(r, z)G(r̂, ẑ; r, z) − �(r, z)

�G

�n
(r̂, ẑ; r, z)

)
d�rz

(1)

the Green’s function kernels to be defined below. In the first equation, (r̂, ẑ) is a point
interior to the domain, and in the second (r̂, ẑ) lies outside. These equations are also valid
for (r̂, ẑ) ∈ �rz, and are in fact then identical, with an appropriate definition of the singular
integrals [19]. The line integral is with respect to the point (r, z) (subsequently the subscript
on � will be omitted), and the boundary contour � is the x > 0 section of the intersection of
the three-dimensional boundary surface with the y = 0 plane. For what is to follow, it is worth
noting that the � integral is over a circle of radius r , and thus the r factor in Equation (1)
comes from the Jacobian of this integration.

The axisymmetric Green’s function G(r̂, ẑ; r, z) and its normal derivative are defined in terms
of the complete elliptic integrals of the first and second kind, K(m) and E(m)

G(r̂, ẑ; r, z) = 1

�

1

(a + b)1/2
K(m) (2)

�G

�n
(r̂, ẑ; r, z) = 1

�

[
nr

2r(a + b)1/2
{E(m) − K(m)} − nQR

(a − b)(a + b)1/2
E(m)

]
(3)

Here a = r2 + r̂2 + �z2, b = 2rr̂ , �r = r − r̂ , �z = z − ẑ, R = (�r, �z) and n = n(r, z) is the
unit outward normal at the field point. Adopting the notation in Reference [20]

K(m) =
∫ �/2

0

d�

(1 − m sin2(�))1/2

E(m) =
∫ �/2

0
(1 − m sin2(�))1/2 d�

(4)
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where the parameter m and its complementary parameter m1 = 1 − m are defined by

m = 2b

a + b
= 4rr̂

(r + r̂)2 + �z2

m1 = a − b

a + b
= �r2 + �z2

(r + r̂)2 + �z2

(5)

The formula for the normal derivative of G can be derived by using the relations [21]
d

dk
K̃(k) = Ẽ(k)

k(1 − k2)
− K̃

k

d

dk
Ẽ(k) = Ẽ(k) − K̃(k)

k

(6)

where K̃(k) = K(k2) and Ẽ(k) = E(k2).
To evaluate E(m) and K(m), we will use the polynomial approximations developed by

Hastings [22]

K(m) ≈
4∑

�=0
a�m

�
1 − log(m1)

4∑
�=0

b�m
�
1

E(m) ≈ 1 +
4∑

�=1
c�m

�
1 − log(m1)

4∑
�=1

d�m
�
1

(7)

the error in these expansions being less than 2 × 10−8; the coefficients {a�, b�, c�, d�} can be
found in Reference [20]. Thus, as expected, G has a logarithmic singularity for (r̂, ẑ) → (r, z)

(m1 = 1−m = 0), and its normal derivative behaves as ‖(�r, �z)‖−1. The logarithmic singularity
is, however, also present in the normal derivative of G, and thus the numerical treatment of
this integral will also have to take into account the presence of this integrable singularity.

Moreover, as noted in Section 1, the singular behaviour is different at the symmetry axis.
Note that a +b appears in the denominator in Equation (2) and Equation (3), and a +b = r2 +
r̂2 + �z2 = 0 when r = r̂ = �z = 0. In this regard, a Galerkin approximation has an immediate
advantage, in that unlike collocation, an equation is not written precisely at the axis. Moreover,
the standard Galerkin weight functions will be modified, and this will eliminate any difficulties
in handling this axis singularity. This will be the case not only for the equation for surface
potential, but also for the (hypersingular) derivative equation for surface flux.

2.1. Galerkin approximation

In the following, the singular integrals will be defined as a limit to the boundary [19], and to
simplify the notation, we employ Q = (r, z) and P = (r̂, ẑ). For convenience, the exterior limit
form of Equation (1) will be employed, and can be written as

P(P ) ≡ lim
�→0+

∫
�

r

(
��

�n
(Q)G(P�, Q) − �(Q)

�G

�n
(P�, Q)

)
d�Q = 0 (8)

where P� = (r̂�, ẑ�) = (r̂, ẑ) + �N, N = N(P ) being the unit outward normal at P = (r̂, ẑ).
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The two somewhat irritating aspects of this axisymmetric boundary integral equation were
alluded to in Section 1. First, although G(P, Q)= G(Q, P ) is, as expected, a symmetric
function of field and source points, r G is clearly not, and the matrix resulting from this integral
will not be symmetric if the usual Galerkin procedure is applied. Second, as previously noted,
the kernel functions contain an additional singularity at the axis r = r̂ = 0, due to the presence
of the a + b term in the denominators. This singularity causes some difficulty for collocation
approximations, and the same would be true here if, once again, standard Galerkin weight
functions were employed. Fortunately there is leeway in the choice of the weight functions,
and this flexibility will be exploited herein.

In Galerkin, Equation (8) is enforced ‘on average’ by employing a second boundary inte-
gration with respect to P

0 =
∫

�
�̂k(P )P(P ) d�P (9)

The Galerkin weight function �̂k(P ) is usually composed of all shape functions �l(P ) that are
non-zero at a particular node Pk; in particular, this implies �̂k(Pk) = 1. To be more specific, in
this work we employ a linear interpolation, in which case a segment (element) of the boundary
is defined by two nodes, {P0, P1} and the two linear shape functions on this element are

�1(t) = 1 − t

�2(t) = t
(10)

where t ∈ [0, 1] is the parametric variable of the element. In terms of these shape functions,
the basic approximations of the boundary and boundary functions are then

Q(s) = �1(s)P0 + �2(s)P1

�(Q(s)) = �(P0)�1(s) + �(P1)�2(s)

��

�n
(Q(s)) = ��

�n
(P0)�1(s) + ��

�n
(P1)�2(s)

(11)

To regain the symmetry (thereby allowing a symmetric-Galerkin formulation), and to amelio-
rate the axis singularity, the obvious course of action is to take the standard weight functions
�̂k(P ) and multiply by r̂ . Thus, the equations to be solved take the form

0 = lim
�→0+

∫
�

r̂�̂k(P )

∫
�

r

(
��

�n
(Q)G(P�, Q) − �(Q)

�G

�n
(P�, Q)

)
d�Q d�P (12)

Moreover, the equation for surface flux is

0 = lim
�→0+

∫
�

r̂�̂k(P )

∫
�

r

(
��

�n
(Q)

�G

�N
(P�, Q) − �(Q)

�2
G

�n�N
(P�, Q)

)
d�Q d�P (13)

where derivatives with respect to N(P ) are with respect to P = (r̂, ẑ). With the additional
factor of r̂ , these equations possess the same symmetry properties as standard boundary integral
formulations [9], and a symmetric-Galerkin formulation is possible.
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The concern in modifying the weight functions in this manner is that now all weight functions
are zero at the axis, possibly wiping out information needed to solve for the axis unknowns (i.e.
it is possible that an ill-conditioned systems of equations might result). A plausible explanation
for why this does not happen is that non-axis points represent a ring source, whereas an axis
point is a degenerate single point; thus, assigning a weight of 0 to the equation precisely at this
point is physically reasonable, and turns out to be computationally sound. In fact this approach
corresponds to starting with a 3-D Galerkin boundary integral formulation, and then, as in the
derivation of Equation (1), integrating out the angular variable in the cylindrical representation
of P . The Jacobian of the cylindrical co-ordinates would produce an r̂ factor in the boundary
integral, as in the above equations.

Moreover, as there is no extra difficulty on the axis in the fully three-dimensional formulation,
it is not surprising that the r̂ factor helps to mollify the kernel function behaviour on the axis. As
will be seen below in the gradient discussion, this is especially useful for treating the derivative
of Equation (8) (e.g. hypersingular equation for surface flux). We note that a similar approach
has been taken in a weak formulation of contact conditions in axisymmetric elasticity [7] using
a collocational BEM.

3. SINGULAR INTEGRATION

For the most part, the boundary limit evaluation of the singular integrals follows the procedures
described in Reference [19]. In particular, the most singular part of �G/�n, comes solely from
the last term in Equation (3)

nQR
(a − b)(a + b)1/2

E(m) (14)

and moreover only from E(1) = 1. For the coincident Galerkin integral, (a + b)1/2 can be
replaced by 2r̂ , and with these substitutions the above function is then essentially the same as
the first derivative kernel for two-dimensional Laplace equation. There is therefore no difficulty
in the analytic evaluation of the integral and the boundary limit. Herein we therefore focus on
the one major new aspect present in the axisymmetric analysis: there is now, in both kernel
functions, a logarithmic singularity having a fairly complicated coefficient. While integrable,
these logarithm terms cannot be accurately evaluated with standard Gauss quadrature. Although
the specialized Gauss rules for a log singularity [23] could be employed, we have opted to
extend the analytic integration procedures as far as possible.

The troublesome log(m1) expression is

log

(
a − b

a + b

)
= log(�r2 + �z2) − log((r + r̂)2 + �z2) (15)

and it is the first term on the right that is the primary concern. We first show that for both
coincident and adjacent singular integrals, the log integrals take the form∫ �

0
F(x) log(Ax) dx (16)

where A is a constant with respect to x, but may be a function of other variables
(Equation (16) being just one part of a multidimensional integral). A possible approach would be
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to write ∫ �

0
F(x) log(Ax) dx = � log(A�)

∫ 1

0
F(�z) dz + �

∫ 1

0
F(�z) log(z) dz (17)

thereby removing the constant A and allowing the log singularity to be handled by specialized
Gauss rules. However, as this would require a separate numerical integration of the first term
on the right, we have chosen to treat the entire integral in Equation (16), employing analytic
integration as much as possible.

The function F(x) arising from the axisymmetric kernels is sufficiently complicated that
analytic integration is not possible. Again a possible algorithm would be to use a Taylor series
(at x = 0) for F, integrating the polynomial part analytically and the remainder numerically
[24]. However, given the complexity of the logarithm functions for axisymmetric analysis
(in particular, considering future applications in elasticity), this would be fairly tedious to
implement for the potential equation, and much worse in implementing the equation for surface
flux. Moreover, for higher order interpolation, the Jacobians are not constants, and this would
complicate matters even further. We have therefore implemented a numerical treatment based
upon extending the procedure in Reference [10] designed to handle the simple case A = � = 1.

We first briefly demonstrate that, Equation (14) aside, the remaining singular integrations
reduce to integrals of the form Equation (16), further details can be found in Reference [19].
The two types of Galerkin singular integrals, coincident and adjacent, are discussed separately.

3.1. Adjacent integration

Assume that the adjacent elements are EQ = (P1, P2) and EP = (P2, P3), the reverse situation
(EP precedes EQ) can be handled similarly. If s and t denote the parameters for the Q and
P integrations, respectively, the singularity Q = P = P2 is at 1 − s = 0, t = 0. By introducing
polar co-ordinates {�, ϑ}

t = � cos(ϑ), 1 − s = � sin(ϑ) (18)

the singularity is then identified by � = 0, and �r2 + �z2 = 	2�2, 	 being a function of ϑ.
Thus, the integration of the logarithm term log(�r2 + �z2) = 2 log(	�) takes the form given in
Equation (16)

2
∫ �/4

0
dϑ

∫ 1/ cos(ϑ)

0
�f (�, ϑ) log(	�) d� + 2

∫ �/2

�/4
dϑ

∫ 1/ sin(ϑ)

0
�f (�, ϑ) log(	�) d� (19)

3.2. Coincident integration

For the coincident integration, EP = EQ = E, and the integral is singular when s = t . Replacing
s by the variable w, s = w + t , the coincident integral is

2
∫ 1

0
dt

∫ 1−t

−t

f (w) log(	|w|) dw

= 2
∫ 1

0
dt

∫ 1−t

0
f (w) log(	w) dw + 2

∫ 1

0
dt

∫ t

0
f (−w) log(	w) dw (20)

These integrals are also of the form in Equation (16).
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3.3. Axis singularity

In addition to differences in the kernels’ algebraic singularities due to (a + b)−1 appearing in
Equations (2) and (3), and additional logarithmic singularity is present on the axis, the last term
in Equation (15). Thus the coincident integration of an axis element contains this additional
weak singularity (this is the only part of the calculation for which an axis element is treated
differently from other elements). However, the procedure for handling this log(a + b) term
when EP = EQ is the same as for the adjacent singular integration. For this term, arrange the
parameters so that the node on the axis corresponds to s = t = 0, and proceed as in the adjacent
case: introduce polar co-ordinates t = � cos(ϑ), s = � sin(ϑ). This leads to a + b = 	2+�2 and
a − b = 	−�2 and thus m1 = 	−/	+, independent of �. Incorporating the shape functions, the
� integrals in this case take the simple form �j log(	+�), and can be computed analytically.
This leaves just the ϑ integration to be evaluated numerically.

3.4. Log integral transformation

As shown above, the singular integration of the complete elliptic integrals requires evaluating
integrals of the form Equation (16). The basic idea is to transform these singular integrals into
a double integral involving just the non-singular function F; the price that is paid for the
overall simplicity of this approach is the computational effort required to evaluate the double
integrals.

After transforming to the double integral, the expectation is that one could use low order
Gauss quadrature for this evaluation. However, numerical tests have shown that the function
F in the coincident integral varies sufficiently rapidly that a large number of Gauss points
are required to obtain a converged value of the integral (and thus the same would be true for
a log-Gauss quadrature). We will therefore, in the coincident case, integrate one part of the
double integral analytically. This makes the implementation somewhat more involved, but on
the other hand, reduces the computational work.

To accomplish the transformation of Equation (16), we first assume A�<1. The case A�>1
(which does not occur in the coincident integration, but may occur in the adjacent) is handled
similarly. We have

∫ �

0
F(x) log(Ax) dx = 1

A

∫ A�

0
F(y/A) log(y) dy = 1

A

∫ A�

0
F(y/A)

∫ y

1

1

u
du dy

= − 1

A

∫ A�

0

∫ u

0
F(y/A)

1

u
dy du − 1

A

∫ 1

A�

∫ A�

0
F(y/A)

1

u
dy du

= −
∫ A�

0

∫ 1/A

0
F(uz) dz du −

∫ 1

A�

∫ �/u

0
F(uz) dz du (21)

the last line coming from the change of variables z = y/(Au). The interchange of the order of
integrals is illustrated in Figure 1(a). The corresponding result for A�>1 is

∫ �

0
F(x) log(Ax) dx = −

∫ 1

0

∫ 1/A

0
F(uz) dz du +

∫ A�

1

∫ �/u

1/A

F(uz) dz du (22)
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Figure 1. The domains for changing the order of integration in the logarithm integrals.

and the geometry in this case is shown in Figure 1(b). For the simple case A = � = 1 there is
only one double integral, so the minor additional complications are the two integrals, and the
two cases depending upon the value of A�.

3.4.1. Analytic integration: coincident. For the logarithm integrals stemming from the coincident
integration, it is necessary to proceed further: numerical evaluation of the double integral using
Gauss quadrature turns out to be ineffective. The function F, the coefficient of the logarithm,
is a polynomial in m1 = (a −b)/(a +b), and this becomes a rational function of the integration
variable. For the coincident integral, a −b = c2w2 and a +b = c2w2 +bw +a, where w = s − t .
Thus, the function F for the flux integral is

(�j,0 + w�j,1)
	 + �w

(w2 + bw + a)1/2

4∑
�=0

b�

(
w2

w2 + bw + a

)�
(23)

where r = 	 + �w and �j,0 + w�j,1 is the shape function �j (Q) expressed as a polynomial in
w. The potential integral lacks this r coefficient, but on the other hand, involves both E(m)

and K(m), and is therefore

�j,0 + w�j,1

(w2 + bw + a)1/2

4∑
�=0

(d� − b�)

(
w2

w2 + bw + a

)�
(24)

Using the procedures of the previous section, w is replaced by uz for the double integral over u

and z; this changes the coefficients, but leaves the form of the rational function unaltered, e.g.

(
u2z2

u2z2 + buz + a

)�
=
(

z2

z2 + b′z + a′

)�
(25)

which has the same form as the w expression, only now b′ = b/u and a′ = a/u2. These rational
functions, together with the appropriate function outside the summations in Equations (23) and
(24), can be integrated analytically with respect to z.

Similar expressions can be obtained, in terms of the variable �, for the adjacent integration.
However, in these cases, analytic integration is less imperative, as the singularity is only at one
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point in the double integral. Moreover, note that the polar co-ordinate transformation combines
the P and Q integration, and thus both r̂(P ) and �k(P ) must be incorporated when integrating
�; the required analytic expressions are therefore much longer, and the computational advantage
of eliminating a numerical integration may in fact disappear. Finally, numerical experiments
indicate that the double integral can be accurately evaluated with a low number of Gauss
points. As the analytic approach for these integrals appears to have no advantages, and actually
some increased complexity in implementation, these integrals have been computed entirely
numerically using Equations (21) and (22).

3.5. Analytic integration formulas

A minor difficulty in implementing the analytic integration of the rational functions is that the
simplest formulas (provided, say, by integration tables or Maple) breakdown at 	2 = 4a−b2 = 0.
This in fact occurs when the element is horizontal, z(1) = z(2). However, it is a simple matter
to derive formulas that are valid for all 	.

First note that by applying an appropriate change of variables, the required integrals are
linear combinations of the simpler integrals of the form∫

Zj

(Z2 + 	2)k+1/2
dZ (26)

where 0<k<4 and 0<j<2k+2. The values of j>2k are necessary to incorporate the additional
w factors in r and �j (Q). Here 	2 = a−b2/4�0, and for various values of {k, j}, the simplest
analytic expressions contain 	 in their denominators. For example, when k = 2 and j = 0∫

1

(Z2 + 	2)5/2
dZ = Z(3	2 + 2Z2)

3	4(Z2 + 	2)3/2
(27)

which diverges at 	 = 0. However, it is possible to add a constant to this indefinite integral,
and subtracting off the coefficient of the Z3/(Z2 + 	2)3/2 term (the limiting value as Z → ∞),
namely 2/(3	4), results in

3Z	2 + 2Z3 − 2(Z2 + 	2)3/2

3(Z2 + 	2)3/2	4
(28)

The final result, clearly well behaved at 	 = 0∫
1

(Z2 + 	2)5/2
dZ = − 3Z2 + 4	2

3(Z2 + 	2)3/2(3Z	2 + 2Z3 + 2(Z2 + 	2)3/2)
(29)

is now just a matter of rationalizing the numerator. Formulas for all of the integrals that require
modification can be found in Appendix.

4. GRADIENT EVALUATION

The post-processing of the complete surface gradient (or stress tensor in elasticity) is important
for many applications, and a wide variety of methods have been developed. The literature is
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substantial, see for example References [11, 25–29]. The approach employed herein [12, 13]
exploits the definition of the integral equations as boundary limits, and therefore falls into
the class of methods based upon boundary integral representations. However, as discussed
previously [13] and also elaborated on below, this method only requires local integrations (as
opposed to a complete boundary integral), and therefore has features in common with local
averaging methods [30, 31].

More specifically, by taking the difference of the interior and exterior limit integral equations
for the gradient, two important simplifications result. The first is that the computational work is
drastically reduced: the double Galerkin integration over the complete boundary is replaced by
just the singular integrations. In fact, as demonstrated below, the calculation can be reduced to
solely the consideration of the coincident integration. Second, the only non-zero contributions
are obviously from terms that are ‘discontinuous’ crossing the boundary, and the implications
of this for axisymmetric analysis, are substantial. The elliptic integrals, K(m) and E(m),
and most especially their log singular terms that required so much attention in solving the
potential equation, do not appear at all in the gradient evaluation. The elliptic integrals appear
solely through E(1) = 1, and as a consequence, the integrations can be carried out entirely
analytically.

4.1. Gradient equations

The surface gradient equations are obtained by differentiating, with respect to r̂ and ẑ, the
interior and exterior limit potential equations, Equation (1), resulting in

�
�X

�(P ) = lim
�→0−

∫
�

r

(
��

�n
(Q)

�G

�X
(P�, Q) − �(Q)

�2
G

�X�n
(P�, Q)

)
d�Q (30)

0 = lim
�→0+

∫
�

r

(
��

�n
(Q)

�G

�X
(P�, Q) − �(Q)

�2
G

�X�n
(P�, Q)

)
d�Q (31)

where X is either r̂ or ẑ. Expressions for the kernel functions can be obtained by using
Equation (6), and are given by

�G

�r̂
= 1

�

1

2r̂(a + b)1/2

[
r2 − r̂2 + �z2

a − b
E(m) − K(m)

]

�G

�ẑ
= 1

�

�z

(a − b)(a + b)1/2
E(m)

(32)

�2
G

�X�n
= 1

�

[(
nr

2r
− nQR

a − b

)
�

�X
E(m)

(a + b)1/2
− nr

2r

�
�X

K(m)

(a + b)1/2

+
(

nX

a − b
− nQR�X

(a − b)2

)
E(m)

(a + b)1/2

]
(33)
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and

�
�X

K(m)

(a + b)1/2
= �

�G

�X

�
�r̂

E(m)

(a + b)1/2
= 1

2r̂(a + b)3/2

[
(�r2 − 4r̂2 + �z2)E(m) − (r2 − r̂2 + �z2)K(m)

]
�
�ẑ

E(m)

(a + b)1/2
= �z

(a + b)3/2
[2E(m) − K(m)]

(34)

Unlike the two equations for surface potential, for which interior and exterior limits yield
the same boundary equation, the two gradient equations are distinct. As in Reference [13], this
fact can be exploited by subtracting Equation (31) from (30). In Galerkin form, once again
employing the modified weight functions, this ‘limit-difference’ equation takes the form

∫
�

r̂�̂k(P )
�

�X
�(P ) d� =

{
lim

�→0− − lim
�→0+

}

×
∫

�
r̂�̂k

∫
�

r

(
��

�n
(Q)

�G

�X
(P�, Q) − �(Q)

�2
G

�X�n
(P�, Q)

)
d�Q d�P (35)

Clearly any non-singular integral is continuous crossing the boundary and vanishes in the
difference of the limits, leaving just the consideration of coincident and adjacent integrals.
To see that the adjacent integrals can also be bypassed, first note that in this case the only
contribution is from the hypersingular �(Q) integral. The polar co-ordinate transformation
establishes that the adjacent integral of the first derivative kernel is integrable for � = 0, hence
continuous at the boundary, and thus must vanish. Similarly, for the hypersingular kernel, the
only non-zero contributions must come at the common (singular) node: integrals involving
shape functions that are zero at the common node are likewise well defined for � = 0 and must
vanish. Thus, if �(Pk) happens to be zero, the adjacent integral does not contribute to the
gradient integral for this node. However, �(Pk) = 0 can always be arranged: if the potential is
shifted by a constant it remains a valid solution of the Laplace equation, and moreover, the
gradient is unaltered. Therefore, in writing the gradient equation at Pk , all one has to do is to
shift the potential by −�(Pk), and the adjacent integral can be ignored.

4.2. Coincident integration

Let the element E for the coincident integral be defined by the two nodes P1 = (r1, z1) and
P2 = (r2, z2), and define cr = r2 − r1, cz = z2 − z1 and c2 = c2

r + c2
z .

Although the expressions for the kernel functions are complicated, for gradient evaluation they
become very simple. We begin by examining the integral of the flux, and from Equation (32)
we obtain

rr̂
�G

�r̂
= 1

�

rr̂

2r̂(a + b)1/2

[(
1 + 2r�r

a − b

)
E(m) − K(m)

]
→ 1

�

r�r

2(a − b)
(36)
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the arrow signifying the result of ignoring any term that is not sufficiently singular to survive
the difference of the limits. Note that at the singular point (�r, �z) → 0, and thus

√
a + b → 2r̂ .

In a similar fashion, for the derivative with respect to ẑ

r r̂
�G

�ẑ
→ 1

�

r�z

2(a − b)
(37)

For the gradient equation at Pk , the contribution from the flux integral is therefore
��/�n(Pj )I

X
kj , where

IX
kj =

{
lim

�→0− − lim
�→0+

}
1

�

∫
E

∫
E

�k(P ) �j (Q)
r�X

2(�r2 + �z2)
d�Q d�P (38)

where k, j = 1, 2 and once again X is either r̂ or ẑ. These integrals can be computed analytically,
and for the derivative with respect to r̂

Ir̂
11 = cz(3r1 + r2)/12, Ir̂

12 = cz(r1 + r2)/12

Ir̂
21 = cz(r1 + r2)/12, Ir̂

22 = cz(r1 + 3r2)/12
(39)

and for ẑ

Iẑ
11 = − cr(3r1 + r2)/12, Iẑ

12 = − cr(r1 + r2)/12

Iẑ
21 = − cr(r1 + r2)/12, Iẑ

22 = − cr(r1 + 3r2)/12
(40)

The ‘simplification’ of the hypersingular integral, i.e. ignoring all non-singular terms, proceeds
as above, with one change. In this case the order of the singularity is −2, and the substitution√

a + b → 2r̂ is no longer appropriate. The appropriate expansion in this case is

1

(a + b)1/2
≈ 1

r + r̂
= 1

2r̂
+
(

1

r + r̂
− �r

2r̂(r + r̂)

)

= 1

2r̂
− �r

2r̂

(
1

2r̂
+
(

1

r + r̂
− �r

2r̂(r + r̂)

))
≈ 1

2r̂
− �r

4r̂2
(41)

For the hypersingular kernels we therefore obtain

rr̂
�2

G

�r̂�n
= 1

4�

[
nz�z

(�r2 + �z2)
+ (r + r̂)

(
nr

�r2 + �z2
− 2

nQR�r

(�r2 + �z2)2

)]

rr̂
�2

G

�ẑ�n
= 1

4�

[
− nr�z

(�r2 + �z2)
+ (r + r̂)

(
nz

�r2 + �z2
− 2

nQR�z

(�r2 + �z2)2

)] (42)

Note that with the additional r̂ factor from the weight function, these kernel functions present
no problem at the axis. Moreover, it is expected (though we have not pursued this here) that
a Galerkin treatment of the hypersingular flux equation (necessitating the use of the complete
kernel functions), would also be without difficulty.
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The integrals corresponding to Equation (38) are

JX
kj =

{
lim

�→0− − lim
�→0+

}∫
E

∫
E

�k(P )�j (Q)rr̂
�2

G

�X�n
d�Q d�P (43)

and analytic evaluation of the hypersingular integrals yields, for r̂ derivatives

Jr̂
11 = (c2

r + 3r1cr)/(6c), Jr̂
12 = (−3r1cr − 3r2cr + c2

r )/(12c)

Jr̂
21 = (3r2cr + 3r1cr + c2

r )/(12c), Jr̂
22 = (−3r2cr + c2

r )/(6c)

(44)

and for ẑ

Jẑ
11 = cz(cr + 3r1)/(6c), Jẑ

12 = cz(cr − 3r1 − 3r2)/(12c)

Jẑ
21 = cz(cr + 3r2 + 3r1)/(12c), Jẑ

22 = cz(cr − 3r2)/(6c)

(45)

The simplified kernel expressions for gradient evaluation should be especially useful for
axisymmetric elasticity, where the kernel functions are significantly more complicated [5, 7, 14].

5. NUMERICAL RESULTS

As a check on the above methods, the results of some simple numerical tests are presented
below. In the first problem, the two-dimensional geometry is a circle of radius one centred at
(2, 0), thus a torus in three dimensions. This problem is therefore simple in that any possible
difficulties near the axis are avoided. The Dirichlet boundary condition is the harmonic function
� = x2 + y2 − 2z2 = r2 − 2z2, and the computed flux and post-processed surface gradient are
compared with the easily obtained exact solutions. Listed in Table I are the discretized L2 errors[

1

N

N∑
j=1

(fc(nj ) − fx(nj ))
2

]1/2

(46)

where fc and fx are the computed and exact values at the nodes nj .
Two things should be noted. First, the convergence is approximately quadratic, which is the

expected behaviour when using linear elements. Second, there is no point in proceeding too
much further in the refinement of the boundary. As the interpolation and integration errors
decay, eventually the approximation of the Green’s functions via Equation (7), must begin to
be a significant component of the error in the solution (as noted previously, the pointwise error
in the four term expansions in Equation (7) is <2 × 10−8). It can therefore be expected that
the quadratic convergence with mesh size eventually disappears.

To test the axis treatment, the second example is the unit sphere, the two-dimensional
geometry being r2 + z2 = 1, r�0. Two different boundary conditions were employed, the first
a point source located on the symmetry axis outside the sphere at (0.0, 1.2)

� = 1

(r2 + (z − zp)2)1/2
(47)

The second used the same quadratic Dirichlet boundary conditions as above. The results are
shown, respectively, in Tables II and III.
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Table I. L2 errors for the Dirichlet problem on the torus.

Elements Flux r̂ derivative ẑ derivative

50 0.337E − 02 0.649E − 02 0.737E − 02
100 0.847E − 03 0.161E − 02 0.183E − 02
150 0.377E − 03 0.715E − 03 0.812E − 03
200 0.213E − 03 0.402E − 03 0.457E − 03
250 0.137E − 03 0.257E − 03 0.292E − 03
300 0.961E − 04 0.178E − 03 0.202E − 03
350 0.714E − 04 0.131E − 03 0.148E − 03
400 0.556E − 04 0.100E − 03 0.113E − 03
450 0.450E − 04 0.790E − 04 0.893E − 04

Table II. L2 errors for the Dirichlet problem on the sphere,
with a point source located at (0, 1.2).

Elements Flux r̂ derivative ẑ derivative

50 0.120E − 00 0.122E − 00 0.151E − 00
100 0.435E − 01 0.108E − 01 0.497E − 01
150 0.235E − 01 0.285E − 02 0.258E − 01
200 0.154E − 01 0.121E − 02 0.165E − 01
250 0.112E − 01 0.655E − 03 0.118E − 01
300 0.878E − 02 0.414E − 03 0.919E − 02
350 0.728E − 02 0.288E − 03 0.756E − 02
400 0.632E − 02 0.215E − 03 0.652E − 02

Table III. L2 errors for the Dirichlet problem on the sphere.

Elements Flux r̂ derivative ẑ derivative

50 0.238E − 02 0.998E − 03 0.412E − 02
100 0.917E − 03 0.248E − 03 0.125E − 02
150 0.541E − 03 0.110E − 03 0.662E − 03
200 0.394E − 03 0.627E − 04 0.452E − 03
250 0.330E − 03 0.410E − 04 0.362E − 03
300 0.307E − 03 0.297E − 04 0.327E − 03
350 0.280E − 03 0.221E − 04 0.293E − 03
400 0.280E − 03 0.178E − 04 0.228E − 03

The convergence rate is clearly not as good as for the torus. An important aspect of the
accuracy in the sphere tests is that, while the near-axis solution is reasonably accurate, never-
theless most of the error occurs in this region. For example, the pointwise error, as a function
of �, 0<�<�/2 (�<0 is similar), for the quadratic boundary conditions with 200 elements, is
plotted in Figure 2. Note that while the relative error at the axis (� = �/2) is quite acceptable,
namely less than 0.1%, it is roughly two orders of magnitude larger than everywhere else.
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Figure 2. Pointwise error for the sphere problem, 0<�<�/2, with �/2 being the axis point.

One possible explanation for this might be that the integrations near the axis are not as
accurate as elsewhere, though two diagnostics—the symmetry in the flux integral, and the row
sums (which should be zero) for the potential integral—indicate that the axis integrations are
just as accurate as other parts of the boundary.

The most likely source of the error at the axis is that the axial symmetry implies a smooth
(zero derivative) solution at the axis, and the linear interpolation clearly violates this. As a test,
the solution for a cylinder, 0<r<1, 0.5<z<0.5 was computed. The mixed boundary conditions
were ��/�n = − 1 on z = − 0.5, ��/�n = 0 on r = 1.0, and � = 1 on z = 0.5. The solution
is therefore linear, and this eliminates geometry and function interpolation errors at the axis,
leaving (ignoring the very small errors introduced by the linear algebra solution) just errors in
integration and the approximations of the elliptic integrals.

Figure 3 plots the error in potential on the bottom of the cylinder y = − 0.5, and as can
be seen, the axis solution, r = 0, is now just as accurate as the remainder of the geometry.
Moreover, the solution for the flux on the top of the cylinder was virtually exact, and the errors
are close to the level of accuracy in computing the elliptic functions. This would indicate that
an appropriate interpolation at the axis is important, and obtaining an axis solution on par with
the remainder of the geometry requires a higher order interpolation.

A final possibility is of course that there is an error in the code. However, as discussed
above, the only difference between an axis and a non-axis point is the handling of the log(a+b)

term in the coincident integration for an axis element. This part of the code appears to be
implemented correctly.

As a final example, results are presented for two ‘sideways L-shaped’ domains, as illustrated
in Figure 4. The motivation for considering this problem is that one of the intended applications
of this work is to model (axisymmetric) drop dynamics [32] using a coupled boundary integral
and Level Set [33] method. If an initial drop is to split into two, it will necessarily ‘pinch
down’ near the axis, and thus a section of the boundary will run parallel and close to the
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Figure 3. Pointwise error for the computed potential for the cylinder problem, r = 0 being the axis
point on the bottom of the cylinder.

Domain boundary
Symmetry axis

Figure 4. Sideways L-shaped domain.

symmetry axis. As the special form of the singularity at the axis may come into play here,
the goal is to test the performance of the algorithm under these circumstances.

For the first geometry the vertices are (0.0, −0.5), (0.1, −0.5), (0.1, 0.0), (0.5, 0.0), (0.5, 0.5),
and (0.0, 0.5), so that the distance to the axis along the lower vertical segment is 0.1. For
the second geometry this distance is reduced to 0.05. We again apply the Dirichlet boundary
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Table IV. L2 errors for the Dirichlet problem on the L-shaped domain.
The distance to the symmetry axis in the first set is 0.1, and is 0.05

for the second set.

h Flux r̂ derivative ẑ derivative

0.1667E − 01 0.7710E − 02 0.5732E − 02 0.6527E − 02
0.1000E − 01 0.3621E − 02 0.2701E − 02 0.3054E − 02
0.7143E − 02 0.2310E − 02 0.1722E − 02 0.1913E − 02
0.5000E − 02 0.1876E − 02 0.1369E − 02 0.1445E − 02

0.1250E − 01 0.5052E − 02 0.3747E − 02 0.4281E − 02
0.8333E − 02 0.2785E − 02 0.2080E − 02 0.2338E − 02
0.6250E − 02 0.1933E − 02 0.1443E − 02 0.1587E − 02

conditions � = r2 − 2z2, and thus at the corners there are two independent flux values to be
determined. The Galerkin procedure allows for this, having two separate weight functions at
the corner [34], but it is known that the errors at these Dirichlet corners is generally larger
than at smooth boundary points. This is indeed what is seen in the calculated errors. The L2

errors, for several choices for mesh size h are given in Table IV. These numbers mostly reflect
the flux errors at the corners, and the quadratic convergence is clearly lost. The errors in the
middle of the segments are roughly one to two orders of magnitude less than at the corners.
In particular, the errors are quite small along the vertical segment parallel and close to the
symmetry axis.

6. CONCLUSIONS

A Galerkin boundary integral formulation for 3D axisymmetric problems has been presented. A
primary feature of this approach is the use of modified weight functions, allowing a simplified
treatment of the axis singularity, while restoring the symmetry present in other boundary
integral formulations. As a consequence, a special axis treatment is not required: elements at
the symmetry axis are handled, with the exception of one logarithm term, the same as any
other element.

It was observed that, for curved geometries, the accuracy of the solution near the axis lagged
behind that of the remainder of the boundary. The numerical tests appear to indicate that the
fault lies with the linear interpolation, and a higher order approximation is required. This is
currently being investigated.

Although we have only considered the axisymmetric Laplace equation, it is expected that
the techniques will apply directly for the significantly more complicated situation present in
axisymmetric elasticity. In particular, the double integral approach for handling the singular
logarithm integrals is expected to result in a relatively simple implementation for the matrix
kernel functions. Similarly, the Green’s function quantities for the hypersingular traction equation
are exceedingly lengthy, and the surface gradient algorithm presented herein should greatly
simplify the evaluation of surface stress.
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APPENDIX

Using the double integral approach, Equations (21) and (22), the logarithm integrals from the
elliptic function approximations (Equation (25)) require the evaluation of∫

Zj

(Z2 + 	2)k+1/2
dZ

0<k<4 and 0<j<2k + 2. For those cases wherein the simple formulas are not finite at
	 = 0, new expressions, derived as in Section 3.4.1, are presented below. These expressions
unfortunately become somewhat lengthy for larger values of k, and we present them in a
computationally convenient Horner form. Defining

S= (Z2 + 	2)1/2

we have∫
1

(Z2 + 	2)3/2
dZ = − 1

S(Z + S)∫
1

(Z2 + 	2)5/2
dZ = −3

3Z2 + 4	2

S3(3	2Z + 2Z3 + 2S3)∫
Z2

(Z2 + 	2)5/2
dZ = −3

3Z4 + (3Z2 + 	2)	2

S3(Z3 + S3)∫
1

(Z2 + 	2)7/2
dZ = − 40Z4 + (95Z2 + 64	2)	2

15S5(15	4Z + 20	2Z3 + 8Z5 + 8S5)∫
Z2

(Z2 + 	2)7/2
dZ = −15Z6 + (40Z4 + (20Z2 + 4	2)	2)	2

15S5(5	2Z3 + 2Z5 + 2S5)∫
Z4

(Z2 + 	2)7/2
dZ = −5Z8 + (10Z6 + (10Z4 + (5Z2 + 	2)	2)	2)	2

5S5(Z5 + S5)∫
1

(Z2 + 	2)9/2
dZ = − 140Z6 + (476Z4 + (567Z2 + 256	2)	2)	2

35S7(35	6Z + 70	4Z3 + 56	2Z5 + 16Z7 + 16S7)∫
Z2

(Z2 + 	2)9/2
dZ = −280Z8 + (1015Z6 + (1344Z4 + (448Z2 + 64	2)	2)	2)	2

105S7(35	4Z3 + 28	2Z5 + 8Z7 + 8S7)∫
Z4

(Z2 + 	2)9/2
dZ = −35Z10 + (140Z8 + (140Z6 + (84Z4 + (28Z2 + 4	2)	2)	2)	2)	2

35S7(7	2Z5 + 2Z7 + 2S7)∫
Z6

(Z2 + 	2)9/2
dZ = −7Z12 + (21Z10 + (35Z8 + (35Z6 + (21Z4 + (7Z2 + 	2)	2)	2)	2)	2)	2

7S7(Z7 + S7)
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