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Abstract

A numerical implementation of the Somigliana identity in displacements for the solution of 3D elastic
problems in exponentially graded isotropic solids is presented. An expression for the fundamental solution
in displacements Uj`, was deduced by Martin et al. (Proc. R. Soc. Lond. A, 458, pp. 1931–1947, 2002).
This expression was recently corrected and implemented in a Galerkin indirect 3D BEM code by Criado
et al. (Int. J. for Numerical Methods in Engineering, 2006). Starting from this expression of Uj`, a new
expression for the fundamental solution in tractions Tj` has been deduced in the present work. These quite
complex expressions of the integral kernels Uj` and Tj` have been implemented in a collocational direct
3D BEM code. The numerical results obtained for 3D problems with known analytic solutions verify that
the new expression for Tj` is correct. Excellent accuracy is obtained with very coarse boundary element
meshes, even for a relatively high grading of elastic properties considered.

Keywords: functionally graded materials, boundary element method, three-dimensional elasticity, Somi-
gliana identity, fundamental solution in tractions.

1 Introduction

Functionally Graded Materials (FGMs) [1] represent a new generation of composites, having a continuous
variation of apparent material properties obtained through a progressive variation of their microstructural
composition. Stress concentrations appearing at material discontinuities in various applications (for example,
thermal barrier coatings) can be avoided or diminished using FGMs.

The first numerical studies of FGMs have been carried out using the Finite Element Method (FEM) [2, 3, 4,
5, 6, 7] due to its capability to include, relatively easily, variation of material properties. The Boundary Element
Method (BEM) [8, 9] is another technique for elastic analysis, capable of solving problems with material and
geometrical discontinuities, e.g., crack growth and contact, and also very suitable for flaw detection and shape
optimization. Nevertheless, an adaption of BEM to non-homogeneous media is a hard task, as fundamental
solutions (corresponding to concentrated loads or sources) for such media are difficult to obtain.

Fundamental solutions for heat transfer problem in non-homogeneous media have been presented in [10,
11, 12, 13, 14] and implemented in BEM codes [12, 15, 16, 17, 18]. Fundamental solutions for 2D and 3D
elastic problems in exponentially graded isotropic materials have been deduced only recently in [19, 20]. These
solutions have not as yet been checked computationally, to the knowledge of the present authors, which can
be due to the fact that implementing them in a BEM code is far from straightforward.

In the present work the displacement fundamental solution Ujl corresponding to a point force in a 3D
exponentially graded elastic isotropic media, developed originally in [20] and corrected in [21, 22], is employed
in the form presented in [21, 22]. Moreover, a new expression of the corresponding traction fundamental
solution Tjl is presented herein, and both functions have been implemented in a 3D collocational BEM code.
To check the correctness of the kernel function expressions and to prove their suitability to be implemented
in a BEM code, and also to check the overall BEM implementation, two 3D problems with known analytic
solutions for exponentially graded materials have been analysed by this BEM code.
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2 Properties of Elastic Exponentially Graded Isotropic Materials

The fourth rank tensor of elastic stiffnesses cijkl for an exponentially graded material varies according to the
following law:

cijk`(x) = Cijk` exp(2β · x), (1)

where x is a point in the material and the vector β defines the direction and exponential variation of grading,
β = ‖β‖. According to (1), points situated in a plane perpendicular to β have the same stiffnesses, Cijk`

giving the stiffnesses in the plane including the origin of coordinates.
In the case of isotropic materials, the Lamé constants λ and µ satisfy

cijk`(x) = λ(x)δijδk` + µ(x) (δikδj` + δi`δjk) , (2)

where δij is Kronecker delta, and hence for exponential grading

λ(x) = λ0 exp(2β · x) and µ(x) = µ0 exp(2β · x). (3)

Here λ0 and µ0 are the Lamé constants on the plane that includes the origin of coordinates. It is easy to check,
that λ(x)/µ(x) = λ0/µ0 = 2ν/(1− 2ν), ν being the (constant) Poisson ratio defined as ν = λ0/2(λ0 + µ0).

3 Elastic Fundamental Solution in 3D Exponentially Graded
Isotropic Materials

3.1 Displacement fundamental solution

According to [20], the displacement fundamental solution can be written as

U(x, x′) = exp{−β · (x + x′)} {
U0(x− x′) + Ug(x− x′)

}
, (4)

where Uj`(x, x′) gives the j-th displacement component at x due to a unit point force acting in the `-direction
at point x′, and U0 is the weakly singular Kelvin fundamental solution associated to a homogenous isotropic
material defined by λ0 and µ0 (see [8, 9]). The so-called grading term

Ug
j`(x− x′) = − 1

4πµ0r

(
1− e−βr

)
δj` + Aj`(x− x′) (5)

is bounded and vanishes for β = 0, r = ‖r‖ where r = x− x′.
Let an orthogonal system of coordinates (x̃1, x̃2, x̃3), whose origin is placed at x′, be defined by the

orthonormal right-handed triad {n,m, β̂}, where β̂ = (β̂1, β̂2, β̂3) = β/β, and n and m are orthonormal
vectors in the plane perpendicular to β. Let the following spherical coordinate system (r,Θ, Φ) be associated
to this coordinate system:

r · n = r sinΘ cosΦ, r · m = r sinΘ sin Φ r · β̂ = r cosΘ , (6)

where 0 ≤ Θ ≤ π and 0 ≤ Φ ≤ 2π.
According to [21, 22] the term Ajl is composed of the following five integrals:

Ajl = − β

4π(1− ν)µ0
I1 − β

2π2(1− ν)µ0
(I2 − I3 + I4 − I5, ) , (7)
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where

I1 =
2∑

s=0

2∑
n=0

∫ π/2

0

R(n)
s e−|k|ys In(Kys) sin θ dθ, (8)

I2 =
2∑

s=0

∫ π/2

θm

R(0)
s sin θ

∫ π/2

ηm

sinhΨs dη dθ, (9)

I3 =
2∑

s=0

∫ π/2

θm

R(2)
s sin θ

∫ π/2

ηm

sinhΨs cos 2η dη dθ, (10)

I4 =
2∑

s=1

∫ π/2

θm

M(1)
s sin θ

∫ π/2

ηm

coshΨs sin η dη dθ, (11)

I5 =
2∑

s=1

∫ π/2

θm

M̃(1)
s sgn(k) sin θ

∫ π/2

ηm

sinhΨs sin η dη dθ, (12)

the extensive notation introduced in this equation being now defined.
First, In(x) denotes the modified first kind Bessel function of order n,

I1(Kys) =
2
π

∫ π/2

0

sinh (Kys sin η) sin η dη, (13)

In(Kys) =
2
π

∫ π/2

0

cosh (Kys sin η) cos nη dη, n = 0, 2. (14)

The integration limits θm and ηm (0 ≤ θm, ηm ≤ π
2 ) are defined by

θm(Θ) =
∣∣ 1
2π −Θ

∣∣ , |k(r,Θ, θ)| = K(r,Θ, θ) sin ηm(Θ, θ), (15)

where k(r,Θ, θ) = βr cos θ cosΘ and K(r,Θ, θ) = βr sin θ sinΘ, and the range of θ guarantees that ηm is well
defined. The argument of the hyperbolic functions is

Ψs(r,Θ, θ, η) = K(r,Θ, θ)ys(θ) (sin ηm(Θ, θ)− sin η), (16)

where the functions ys are given by

y0 = 1, y1(θ) =
√

q(θ) +
√

q2(θ)− 1, y2(θ) =
√

q(θ)−
√

q2(θ)− 1 , (17)

with q(θ) ≥ 1 defined as

q(θ) = 1 +
2ν

1− ν
sin2(θ). (18)

The functions R(n)
s and M(n)

s are given by

R(0)
s = M(0)

s , R(2)
s = −M(2)

s , s = 0, 1, 2, (19)

R(1)
s = −

(
M(1)

s + M̃(1)
s sgn(k)

)
, s = 1, 2, (20)

M(n)
0 =

fn(1)
2 D(1)

, M(n)
s =

fn(ys)
(1− y2

s) D′(ys)
, n = 0, 2 and s = 1, 2, (21)

M(1)
s =

f1(ys)
D′(ys)

, M̃(1)
s =

f̃1(ys)
D′(ys)

, s = 1, 2, (22)

while the functions fi are defined by

f0(x) = 1
2{8νx4 − (−x2 + 1)(−2x2q + 1)}(njn` + mjm`) sin2 θ (23)

+
{
8νx4 sin2 θ + (−x2 + 1)[−x2 − (−2x2q + 1) cos2 θ]

}
β̂j β̂`, (24)

f1(x) = x3(4ν − 1)(sj β̂` − β̂js`) sin θ, (25)

f̃1(x) = − 1
2 (sj β̂` + β̂js`)(−2x2q + 1) sin 2θ, (26)

f2(x) = − 1
2 [8νx4 − (−x2 + 1)(−2x2q + 1)]

{
nj(n` cos 2Φ + m` sin 2Φ) (27)

+ mj(n` sin 2Φ−m` cos 2Φ)
}

sin2 θ, (28)
sj(Φ) = nj cos Φ + mj sinΦ, (29)
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and the polynomials D(x) and D′(x) by

D(x) = x4 − 2x2q + 1 and D′(x) = −4x3 + 4xq . (30)

Notice that D′(x) is not the derivative of D(x).
A discussion of the properties of the fundamental solution Ujl and some aspects of the above expression,

together with recommendations for its numerical evaluation can be found in [21, 22].

3.2 Traction fundamental solution

The direct boundary integral equation for surface displacement requires the displacement fundamental solution,
and the corresponding traction fundamental solution. The starting point in the evaluation of tractions in an
exponentially graded material due to a unit point force is the differentiation of the fundamental solution in
displacements Ujl. These derivatives are used to determine the corresponding strains, and then employing the
constitutive law with the tensor of elastic stiffnesses given in (2-3), the corresponding stresses can be obtained.

Differentiation of (4) yields

∂Uj`

∂xk
(x, x′) = exp (−β · (x + x′))

(
∂U0

j`

∂xk
(x− x′) +

∂Ug
j`

∂xk
(x− x′)

)
− βkUj`(x, x′) . (31)

Although the derivative of U0
j` is strongly singular, this term eventually produces the Kelvin traction kernel

for a homogeneous material; the expressions can be found in [8, 9]. The derivative of Ug
j` is weakly singular

and can be expressed, in view of (5), as

∂Ug
j`

∂xk
(x− x′) = − δj`

4πµ0

{
e−β r(β r,k)

r
− (1− e−β r)r,k

r2

}
+

∂Aj`

∂xk
(x− x′) , (32)

where the derivative of Ajl is, according to (7), decomposed into the sum of the derivatives of the integrals Ii

∂Ajl

∂xk
(x− x′) = − β

4π(1− ν)µ0

∂I1

∂xk
− β

2π2(1− ν)µ0

(
∂I2

∂xk
− ∂I3

∂xk
+

∂I4

∂xk
− ∂I5

∂xk

)
. (33)

Note that the weakly singular character of ∂Ug
j`/∂xk directly follows from the boundedness of Ug

j` and the
Gauss divergence theorem.

When differentiating Ii (i = 2, . . . , 5), involving double integrals with respect to η and θ, it should be taken
into account that while their superior limits are constant, their inferior limits are varying with the positions
of the field and source points, x and x′, as follows:

• Inferior limit of the integral in θ: θm = θm(x, x′),
• Inferior limit of the integral in η: ηm = ηm(x, x′, θ).

Thus, derivatives of these doubles integrals are evaluated by applying the following rule twice:

d

dx

∫ B

A(x)

f(x, t)dt =
∫ B

A(x)

∂f(x, t)
∂x

dt− f(x,A(x))
dA

dx
. (34)

By also taking into account that ηm(θ = θm) = π/2 and consequently Ψs(η = ηm) = 0, see [21], the
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following expressions are obtained after some algebraic manipulations:

∂I1

∂xk
=

2∑
s=0

2∑
n=0

∫ π/2

0

e−|k|ys sin θ

{
∂R(n)

s

∂xk
In(Kys) +R(n)

s

(
−ys

∂|k|
∂xk

In(Kys) +
∂In(Kys)

∂xk

)}
dθ (35)

∂I2

∂xk
=

2∑
s=0

∫ π/2

θm

sin θ

{
∂R(0)

s

∂xk

∫ π/2

ηm

sinhΨs dη +R(0)
s

{∫ π/2

ηm

coshΨs
∂Ψs

∂xk
dη

}}
dθ (36)

∂I3

∂xk
=

2∑
s=0

∫ π/2

θm

sin θ

{
∂R(2)

s

∂xk

∫ π/2

ηm

sinhΨs cos 2ηdη +R(2)
s

{∫ π/2

ηm

coshΨs cos 2η
∂Ψs

∂xk
dη

}}
dθ (37)

∂I4

∂xk
=

2∑
s=1

∫ π/2

θm

sin θ

{(
∂M(1)

s

∂xk

) ∫ π/2

ηm

coshΨs sin ηdη +M(1)
s

{∫ π/2

ηm

sinhΨs sin η
∂Ψs

∂xk
dη − ∂ηm

∂xk
sin ηm

}}
dθ

(38)

∂I5

∂xk
=

2∑
s=1

∫ π/2

θm

sin θ

{(
∂M̃(1)

s

∂xk
sgn(k)

) ∫ π/2

ηm

sinh Ψs sin ηdη + M̃(1)
s sgn(k)

{∫ π/2

ηm

coshΨs sin η
∂Ψs

∂xk
dη

}}
dθ

(39)

where

∂R(n)
s

∂xk
= 0, n = 0 and n = 1 with s = 0, (40)

= −∂M(1)
s

∂xk
− ∂M̃(1)

s

∂xk
sgn(k), n = 1 with s = 1, 2, (41)

= −∂M(2)
s

∂xk
, n = 2, (42)

∂Ψs

∂xk
=

∂K

∂xk
ys(sin ηm − sin η) + K ys cos ηm

∂ηm

∂xk
, (43)

∂In

∂xk
=

2
π(−1)n/2

∫ π/2

0

cos(nη) sinh(K ys sin η)
∂K

∂xk
ys sin ηdη, n = 0, 2, (44)

=
2
π

∫ π/2

0

sin(η) cosh(K ys sin η)
∂K

∂xk
ys sin ηdη, n = 1. (45)

The derivative of ηm is expressed as

∂ηm

∂xk
=

1
K cos ηm

{
∂|k|
∂xk

− sin ηm
∂K

∂xk

}
, (46)

where
∂k

∂xk
= β

(
∂r

∂xk
cos θ cos Θ + r cos θ

∂cosΘ
∂xk

)
, (47)

∂K

∂xk
= β

(
∂r

∂xk
sin θ sinΘ + r sin θ

∂sinΘ
∂xk

)
. (48)

The derivatives of M(n)
s and M̃(n)

s appearing in the above expressions are given by:

∂M(n)
s

∂xk
= 0, n = 0, (49)

=
1

D′(ys)
∂f1

∂xk
(ys), n = 1, (50)

=
1

D(1)
∂f2

∂xk
(1), n = 2 with s = 0, (51)

=
1

(1− ys
2)D′(1)

∂f2

∂xk
(1), n = 2 with s = 1, 2, (52)

∂M̃(1)
s

∂xk
=

1
D′(ys)

∂f̃1

∂xk
(ys), (53)
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where
∂f1

∂xk
(x) = x3(4ν − 1)

(
∂sj

∂xk
β̂l − ∂sl

∂xk
β̂j

)
sin θ (54)

∂f2

∂xk
(x) = −0.5 [8νx4 − (−x2 + 1)(−2x2q + 1)]

{
nj

(
nl

∂cos 2Φ
∂xk

+ ml
∂sin 2Φ

∂xk

)
(55)

+ mj

(
nl

∂sin 2Φ
∂xk

−ml
∂cos 2Φ

∂xk

)}
sin2 θ (56)

∂f̃1

∂xk
(x) = −0.5

(
∂sj

∂xk
β̂l +

∂sl

∂xk
β̂j

)
(−2x2q + 1) sin 2θ . (57)

(58)

Finally,
∂sj

∂xk
= nj

∂cos Φ
∂xk

+ mj
∂sinΦ
∂xk

(59)

∂

∂xk
=

∂

∂x̃j

∂x̃j

∂xk
= Ljk

∂

∂x̃j
, (60)

where L1k = nk, L2k = mk, L3k = β̂k, and
∂cosΘ
∂x̃j

=
δj3

r
− r3

r2

∂r

∂x̃j
, (61)

∂sinΘ
∂x̃j

=
1

r
√

r2 − r2
3

(
r

∂r

∂x̃j
− r3 δj3

)
−

√
r2 − r2

3

r2

∂r

∂x̃j
, (62)

∂cosΦ
∂x̃j

=
δj1√

r2 − r2
3

− r1

(r2 − r2
3)3/2

(
r

∂r

∂x̃j
− r3 δj3

)
, (63)

∂sinΦ
∂x̃j

=
δj2√

r2 − r2
3

− r1

(r2 − r2
3)3/2

(
r

∂r

∂x̃j
− r3 δj3

)
. (64)

The strains Eij`(x, x′) associated with the fundamental solution in displacements Uj`(x, x′) given by

Eij`(x, x′) =
1
2

(
∂Ui`

∂xj
(x,x′) +

∂Uj`

∂xi
(x,x′)

)
, (65)

and thus incorporating the constitutive law defining the elastic stiffnesses (2-3), yields the corresponding
stresses

Σij` = 2µ(x)Eij`(x,x′) + λ(x)Ekk`(x, x′)δij . (66)
Then, substituting (65) into (66) and using (31) yields

Σij`(x− x′) = exp (β · (x− x′))
(
Σ0

ij`(x− x′) + Σg
ij`(x− x′)

)
, (67)

where the strongly singular term Σ0
ij`(x− x′) represents the stress tensor σij at x originated by a unit point

force in direction ` at x′ in the homogeneous elastic isotropic material having Lamé constants µ0 and λ0

(see [8, 9]). The weakly singular grading term Σg
ij`(x− x′) is expressed as:

Σg
ij`(x− x′) = µ0

(
∂Ug

i`

∂xj
+

∂Ug
j`

∂xi
− βi

(
U0

j` + Ug
j`

)
− βj

(
U0

i` + Ug
i`

)
)

+λ0

(
∂Ug

k`

∂xk
− βk

(
U0

k` + Ug
k`

))
δij . (68)

Finally the corresponding traction vector Ti`(x, x′), associated with the unit outward normal vector n(x),
is obtained from Σij`(x− x′) by the Cauchy lemma:

Ti`(x, x′) = Σij`(x− x′)nj(x) (69)

= exp (β · (x− x′))
(
T 0

i`(x, x′) + T g
i`(x, x′)

)
, (70)

where, as for the stress, T 0
i`(x, x′) represents the well-known strongly singular fundamental solution in tractions

for a homogeneous material (parameters µ0 and λ0) (see [8, 9]), and T g
i`(x,x′) is the weakly singular grading

term obtained from Σg
ij`(x− x′), T g

i`(x,x′) = Σg
ij`(x− x′) nj(x).
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4 Boundary Element Method

The boundary integral formulation for an isotropic, exponentially graded body Ω with (Lipschitz and piecewise
smooth) boundary ∂Ω = Γ will be briefly discussed in this section. The derivation follows the standard
procedures for a homogeneous material [8, 9]. Starting from the 2nd Betti Theorem of reciprocity of work for
a graded material, one can derive the corresponding Somigliana identity,

Ci`(x′)ui(x′) +−
∫

Γ

Ti`(x,x′)ui(x)dS(x) =
∫

Γ

Ui`(x, x′)ti(x)dS(x) , (71)

expressing the displacements ui(x′) at a domain or boundary point x′ ∈ Ω ∪ Γ in terms of the boundary
displacements ui(x) and tractions ti(x), x ∈ Γ. The strongly singular traction kernel integral is evaluated in
the Cauchy principal value sense, and

Ci`(x′) = lim
ε→0+

∫

Sε(x′)∩Ω

Ti`(x,x′)dS(x) (72)

is the coefficient tensor of the free term, Sε(x′) being a spherical surface of radius ε centered at x′. It is
important to note that, despite the complexity of the Ti` kernel expression, this evaluation is not a problem.
The weakly singular grading term and the exponential coefficient in (70) will play no role in the limit procedure
in (72). Thus, the value of Ci` in (72) coincides with the value of Ci` for the homogeneous isotropic material
whose properties are defined by the Lamé constants λ0 and µ0, i.e.,

Ci`(x′) = lim
ε→0+

∫

Sε(x′)∩Ω

T 0
i`(x, x′)dS(x). (73)

Hence, Ci`(x′) = δi` for x′ ∈ Ω, Ci`(x′) = 1
2δi` for x′ ∈ Γ situated at a smooth part of Γ, and for an edge or

corner point of Γ, Ci`(x′) is given by the size, shape and spatial orientation of the interior solid angle at x′. A
general explicit analytic expression of the symmetric tensor Ci`(x′) in terms of the unit vectors tangential to
the boundary edges and the unit outward normal vectors to the boundary surfaces at x′ can be found in [23].

The numerical implementation of (71) in this work employs standard approximation techniques. A col-
location approximation based upon a nine-node continuous quadrilateral quadratic isoparametric element is
employed to interpolate the boundary and the boundary functions. The evaluation of regular integrals is
accomplished by Gaussian quadrature with 8× 8 integration points, whereas an adaptive element subdivision
following the procedure developed in [24] is utilized for nearly singular integrals. A standard polar coordinate
transformation [24] is employed to handle the weakly singular integrals involving the kernel Ui`, and the rigid
body motion procedure is invoked for evaluating the sum of the coefficient tensor of the free term Ci` and the
Cauchy principal value integral with the kernel Ti`.

5 Numerical Results

The expression for the Ti`(x, x′) kernel is clearly quite complicated, and thus it is necessary to verify that
these formulas and their numerical implementation are correct. This is accomplished in this section using two
relatively simple problems having known exact solutions.

Consider the cube Ω = (0, `)3 wherein the material is exponentially graded in x3-direction. The grading
coefficient β in the numerical tests will be chosen as (ln 2)/` or (ln 7)/`; thus, the Young modulus increases
in the x3-direction 4 or 49 times, respectively, i.e., E(x3 = `)/E0 = 4 or 49, where E0 = E(x3 = 0). In both
test problems, symmetry boundary conditions are imposed on the three faces coincident with the coordinate
planes: x1 = 0, x2 = 0 and x3 = 0. Elastic solutions in this cube having different loads and different Poisson
ratios ν will be studied using three very coarse meshes, denoted as A, B and C. Mesh A has one element per
face, and therefore 6 total elements, while the meshes B and C are obtained by dividing each element of mesh
A parallel to the x3-direction into 2 and 3 uniform elements, respectively. This results in a total of 10 and 14
elements. These meshes are shown in Figure 1, together with the above symmetry boundary conditions.

The percentages of the normalized error in stresses and displacements will be computed as

%Err(σij) =
σBEM

ij − σanal.
ij

σ0
× 100, %Err(ui) =

uBEM
i − uanal.

i

max uanal.
i

× 100 , (74)

where σ0 is a nominal stress involved in the definition of each problem.
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Figure 1: Three BEM discretizations of cube (A, B and C) using 6, 10 and 14 elements, respectively.

Table 1: Normalized errors in σ33 at the plane x3 = 0. Grading coefficient β = (ln 2)/`. Meshes A, B and C.

Normalized error (%)

Node Coordinates A B C

1 (0, 0, 0) -0.9931 -0.2070 0.0149
2 (0.5`, 0, 0) 0.0311 -0.0080 0.0123
3 (`, 0, 0) -0.4273 -0.1961 -0.1951
4 (0, 0.5`, 0) 0.0311 -0.0078 0.0128
5 (0.5`, 0.5`, 0) 1.0948 0.1920 -0.0544
6 (`, 0.5`, 0) 0.3084 -0.0583 0.0260
7 (0, `, 0) -0.4276 -0.1967 -0.1966
8 (0.5`, `, 0) 0.3085 -0.0581 0.0266
9 (`, `, 0) 0.2416 -0.1283 -0.368

5.1 Example 1

Let the cube Ω, with the Poisson ratio ν = 0.0, be subjected to a constant normal traction σ0 on its face
x3 = ` (i.e. σ33(x1, x2, `) = σ0), the other faces, x1 = ` and x2 = `, being traction free.

The exact solution of this problem can be found in [22]: u3(x) = (1− exp(−2βx3))σ0/2βE0, u1 = u2 = 0,
σ33(x) = σ0 and the remaining stresses vanishing, σij = 0 for (i, j) 6= (3, 3).

The accuracy of the solution when refining the mesh can be observed in Tables 1 and 2 where the percentage
of the normalized error in the normal stresses σ33(x1, x2, 0) and the displacements u3(`, `, x3) are presented
for the smaller value of the grading coefficient (β = (ln 2)/`). Although the convergence is not uniform, due to
the very coarse meshes used, the level of the errors is excellent. In particular, for the extremely coarse mesh
A the maximum error in stresses is already about 1%, whereas mesh C provides errors less than 0.2%. Errors
in displacements are even smaller, less than 0.4% for mesh A and less than 0.004% for mesh C.

The results obtained for the substantially stronger grading (β = (ln 7)/`) are shown in Tables 3 and 4.
Although, as could be expected, the level of error is somewhat higher than in the previous case, errors in
stresses and displacements, respectively, under 0.9% and 0.5% are still excellent in view of the relatively coarse
mesh B used.
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Table 2: Normalized errors in u3 along the edge x1 = x2 = `. Grading coefficient β = (ln 2)/`. Meshes A, B
and C.

Normalized error (%)

Node Coordinates A B C

1 (`, `, 0.17`) 0.0010
2 (`, `, 0.25`) -0.0245
3 (`, `, 0.33`) 0.0000
4 (`, `, 0.50`) -0.2638 -0.0335 -0.0006
5 (`, `, 0.67`) -0.0015
6 (`, `, 0.75`) -0.0411
7 (`, `, 0.83`) -0.0029
8 (`, `, `) -0.3913 -0.0383 -0.0031

Table 3: Normalized errors in σ33 at the plane x3 = 0. Grading coefficient β = (ln 7)/`. Mesh B.

Normalized error (%)

Node Coordinates B

1 (0, 0, 0) 0.0145
2 (0.5`, 0, 0) 0.8022
3 (`, 0, 0) -0.4717
4 (0, 0.5`, 0) 0.8924
5 (0.5`, 0.5`, 0) 0.1422
6 (`, 0.5`, 0) 0.8024
7 (0, `, 0) 0.6548
8 (0.5`, `, 0) 0.8927
9 (`, `, 0) 0.0140

Table 4: Normalized errors in u3 along the edge x1 = x2 = `. Grading coefficient β = (ln 7)/`. Mesh B.

Normalized error (%)

Node Coordinates B

1 (`, `, 0.25) 0.2521
2 (`, `, 0.5`) 0.4067
3 (`, `, 0.75`) 0.4452
4 (`, `, `) 0.4462
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Table 5: Normalized errors in σ11 along the edge x1 = x2 = 0. Grading coefficient β = (ln 2)/`. Meshes A, B
and C.

Normalized error (%)

Node Coordinates A B C

1 (0, 0, 0) 0.713307 0.090730 0.019430
2 (0, 0, 0.17`) -0.035429
3 (0, 0, 0.25`) -0.005309
4 (0, 0, 0.33`) 0.009429
5 (0, 0, 0.50`) 0.023527 0.023982 -0.065233
6 (0, 0, 0.67`) -0.000443
7 (0, 0, 0.75`) -0.001453
8 (0, 0, 0.83`) -0.105120
9 (0, 0, `) -1.093050 -0.203555 -0.085220

Table 6: Normalized errors in u1 along the line x2 = 0.5` and x3 = `. Grading coefficient β = (ln 2)/`. Meshes
A, B and C.

Normalized error (%)

Node Coordinates A B C

1 (0.5`, 0.5`, `) 0.0639 0.0023 -0.0564
2 (`, 0.5`, `) 0.1677 0.0215 -0.0287

5.2 Example 2

In this example, let the cube Ω be subjected to a constant normal displacement σ0`/E0 on its face x1 = ` (i.e.
u1(`, x2, x3) = σ0`/E0), the other faces, x2 = ` and x3 = `, being traction free. In addition, the Poisson ratio
is specified as ν = 0.3 and the grading coefficient β = (ln 2)/`.

The exact solution of this problem can also be found in [22]: u1(x) = σ0x1/E0, u2 = −νσ0x2/E0, u3 =
−νσ0x3/E0, σ11(x) = σ0 exp(2βx3), with the remaining stresses vanishing, σij = 0 for (i, j) 6= (1, 1).

Tables 5, 6 and 7 present the normalized errors obtained. As in the previous example, an excellent accuracy
has been obtained, although the results do not show a uniform convergence, again due to the very coarse meshes
used. Spefically, the errors in the normal stresses σ11(0, 0, x3) are less than 1.1% for mesh A and 0.11% for
mesh C, errors in the displacements u1(x1, 0.5`, `) are less than 0.17% for mesh A and 0.06% for mesh C, and
errors in displacements u3(`, 0.5`, x3) are less than 0.07% for mesh A and 0.021% for mesh C.

Table 7: Normalized errors in u3 along the line x1 = ` and x2 = 0.5`. Grading coefficient β = (ln 2)/`. Meshes
A, B and C.

Normalized error (%)

Node Coordinates A B C

1 (`, 0.5`, 0.17`) 0.0004
2 (`, 0.5`, 0.25`) -0.0036
3 (`, 0.5`, 0.33`) 0.0018
4 (`, 0.5`, 0.50`) -0.0567 -0.0067 0.0076
5 (`, 0.5`, 0.67`) 0.0161
6 (`, 0.5`, 0.75`) -0.0063
7 (`, 0.5`, 0.83`) 0.0207
8 (`, 0.5`, `) -0.0642 -0.0117 0.0147
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6 Conclusions

The numerical solution of the 3D Somigliana displacement identity for isotropic elastic exponentially graded
materials by a direct collocation BEM code has been successfully developed.

First, a new expression of the strongly singular fundamental solution in tractions for such materials has been
deduced. Then, the fundamental solutions in displacements, Uj`, and tractions, Tj`, have been implemented in
the BEM code. To the best knowledge of the authors, this is the first implementation of a 3D direct BEM code
for such materials. The numerical solution of a few examples with known analytic solutions have produced
excellent accuracy, confirming the correctness of the kernel functions and their implementation.

The remaining problem to use this approach in a convenient way from now on is simply computation time:
the evaluation of the Green’s function kernels is quite expensive and techniques to reduce this cost must be
developed. One option is to develop faster techniques for computing the kernels (e.g., table look-up), and
another is to implement the BEM code on a multi-processor machine.
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