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Abstract
A series of molecular dynamics simulations using the embedded atom method
is conducted to investigate crack propagation under mode I loading in a Ni
single crystal with and without defects. The crack system (0 0 1)[1 0 0] in
a slab of 160 000 atoms was studied. Defects consisting of lines of vacancies
were introduced near the crack tip. Critical loads and strain energy distributions
around the crack tip are obtained. Our results indicate that the critical strain
necessary for crack propagation is dependent on the defect configuration and
can either increase or decrease relative to the defect-free system.

1. Introduction

The study of crack propagation in materials can be very difficult due to its multiscale nature.
The smallest scale is the breaking of the bonds between atoms as the crack propagates. The
driving force behind the bond breaking is the far strain field due to the loading applied to the
sample. The strain field is influenced by micro-cracks, sample geometry and size, as well as
dislocations and other defects. It is understood that propagation of a crack in a material not
only depends on the load but also on the various types of defects present. Because a material
fails when the strain concentration exceeds the failure strength of materials, failure analyses is
directly related to the strain concentration near the crack tip. Modelling of crack propagation is
traditionally done using a continuum mechanics approach in which the effects of atomic scale
defects are not included. Most of the simulations of brittle crack propagation in the presence
of defects were performed in either two-dimensional or otherwise three-dimensional systems
with less degrees of freedom [1]. The experimental study of atomic scale defects and their
effects on toughness of materials were done in copper in the presence of a grain boundary [2].
With the advent of more efficient hardware and software it is now possible to model crack
propagation in a solid material in the presence of defects from an atomistic standpoint.

A logical approach to the study of brittle crack propagation is to examine an experimentally
brittle material such as a semiconductor or a bcc transition metal. Due to the complexity
of bonding in these materials, fast and reliable interatomic potentials are rarely available.
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On the other hand, fast and quite reliable interatomic potential models are available for nickel
and other fcc metals. Although fcc metals, in general, and nickel, in particular, are known as
ductile materials, the study of brittle crack propagation in these materials is still possible for
the specific crack system that is employed here in crystalline nickel.

There are several types of classical atomistic computer simulations available for modelling
the process of crack propagation in a solid material. They include molecular dynamics (MD),
Monte-Carlo and molecular statics (MS). Among these three frequently used methods, MD and
MS are best suited for this application. While MD can provide time-dependent information
necessary for the calculation of crack speed, MS is best suited for the calculation of the strain
energy distribution near the crack tip.

The main objective of this paper is to study the effect of defects on crack propagation.
We begin by examining crack propagation in the defect-free crystal for the Ni EAM interatomic
potential we have chosen. Once the crack behaviour of the defect-free lattice is described,
defects consisting of lines of vacancies are inserted into the lattice near the crack tip and the
critical energy release rate and strain energy distributions near the crack tip are evaluated and
analysed. By examining the change in strain energy due to the introduction of defects for each
atom near the crack tip, one can gain a better understanding of the fracture process in defective
systems.

The paper is organized as follows. A brief summary of the embedded atom method (EAM)
employed in this work is presented in section 2.1. The crack geometry as well as the formulae
involved in the calculation of the Griffith’s energy function G are presented in section 2.2.
A brief description of MD as well as its application to the present case is given in section 2.3.
Results are presented and discussed in section 3.1 for the defect-free crystal and in 3.2 for the
crystal with defects. Finally, the concluding remarks are given in section 4.

2. Computational procedure

2.1. Embedded atom method

The EAM was originally developed by Daw and Baskes as a model for the bonding of fcc
metals and subsequently has been extended by Baskes to other crystalline structures [3]. The
EAM potential consists of a many body term representing the interaction of an embedding
atom core with the electronic charge density of the remaining atoms in the system and a pair
wise term representing the electrostatic interactions between the atoms cores. The many body
term is referred to as the embedding function. The total energy E of a system of N atoms can
be written as

Ei = Fi(ρi) +
1

2

∑
j �=i

φij (rij ), (1.1)

Epot =
N∑

i=1

Ei, (1.2)

ρi =
∑
j �=i

ρa
ij (rij ), (1.3)

where Ei is the energy of atom i, Fi is the embedding energy of atom i, ρi is the electron
density at site i, φij is the pair potential function between atoms i and j and ρa

ij is the atomic
charge density of atom j at the location of atom i. The embedding energy and pair potential
functions were determined, originally, by considering functional forms for them and fitting to
the bulk experimental data.
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Figure 1. Schematic of the crack propagation geometry under mode I (tensile strain) loading.

The EAM functions for nickel employed here are the ones that were recently developed
by Mishin et al [4] and are believed to be superior to the previous EAM functions due to the
fact that they are fitted to a richer database using a new fitting scheme. Mishin EAM functions
are fitted to the elastic constants, surface energies as well as to other bulk and surface data. For
the present application it is critical that the potential reproduces the elastic constants as well
as surface energies very accurately.

2.2. Crack geometry

A crack is introduced into the lattice by partially turning off interatomic bonds between atoms
in eight consecutive (0 0 1) planes. The two middle planes are the upper and lower surfaces
of the starter crack. This restriction on the potential prevents the initial crack from rebonding.
Following the prescription set forth in [5] for a similar Ni EAM potential, the length of the
starter crack is set to roughly L/4, where L is the total length of the slab along the x-direction.
For the (0 0 1)[1 0 0] crack system, the crack-free surfaces are (0 0 1) and the crack propagates
along the [1 0 0] direction, as shown in figure 1. The computational cell is periodic along
y = [0 1 0] and an external tensile load is applied along the z = [0 0 1] direction by expanding
the lattice along the z-direction and freezing the upper and lower free surfaces along that
direction. The periodic boundary condition along the y-direction emulates the plane strain
regime and is believed to prevent emission of dislocations in the crystal [5]. This in turn
makes it possible to study brittle crack propagation in a material that is originally ductile.
We checked the size dependences of our results and concluded that a sample size of about
702 × 12.3 × 174 Å3 with 160 000 atoms was sufficiently large to take care of the long-range
character of the crack strain fields.

The strain energy release rate G is an important quantity in the study of crack propagation.
According to Griffith’s criteria, a brittle crack under mode I loading will propagate when
G corresponding to an applied load becomes equal or greater than 2γs, where γs is the surface
energy of each plane of the crack. Even though Griffith’s formula is a simple way of predicting
the critical value of G for the crack propagation, its usefulness is limited in that it only provides
a lower bound of G. In the loading configuration of figure 1, G is the strain energy per unit area
of (0 0 1) plane in front of the crack tip. A more realistic way of calculating G is based on the
strained energy release from a strained rectangular prism of sides x = L, y = y and z = W .
For mode I loading, the strain energy density stored in the slab of figure 1 has a simple form,

U = 1

2
E′ε2 = 1

2

E

1 − ν2
ε2, (2)

where U is the strain energy density, E′ is the effective Young’s modulus, ε is the applied
strain and for plane strain condition E′ = E/(1 − ν2), where E is Young’s modulus and ν is
Poisson’s ratio. The energy release rate G is defined as the elastic energy released per unit
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length advance of the crack tip [6],

G = U × W = 1

2

EW

1 − ν2
ε2. (3)

Isotropic Young’s modulus, E, and Poisson’s ratio, ν, can be approximated from the exact
elastic constants C11, C12 and C44 using the Voigt averaging method [6],

µ = C44, (4.1)

λ = C12, (4.2)

ν = λ/(2(λ + µ)), (4.3)

E = 2µ(1 + ν), (4.4)

where C12 and C44 are reported in [4] for the nickel EAM potential employed here.
The dynamic fracture toughness, Gd, is related to the crack speed, v, using the continuum

mechanical solution [6–8]:

Gd = Gs(1 − v/vR), (5)

where Gs is the static strain energy release rate and vR is the Rayleigh wave speed in the
direction of crack propagation. Gd is the part of Gs that goes into creating the crack surfaces
as well as dislocations and other types of lattice defects. Prediction of continuum mechanics
for v/vR versus Gs can be obtained by inverting equation (5):

v/vR = (Gs − Gd)/Gs, (6)

where Gd is approximated with the Griffith load, Gd = 2γs. There are three limiting speeds
when sound wave propagates inside a solid. In the order of increasing velocity they are Rayleigh
(vR), shear (v2) and longitudinal (v1). Using formulae for v1 and v2, given after equation (8),
and C11 = 247 GPa, C44 = 125 GPa and ρ = 8900 kg m−3 from the interatomic potential, the
values of v1 = 5268 m s−1 and v2 = 3748 m s−1 are obtained. The Rayleigh wave is a wave
that propagates over a surface in a specific direction. In the present situation, the Rayleigh
wave propagates over a (0 0 1) plane in the [1 0 0] direction and the following equation was
developed [9] for that situation,

C11(ρv2
R − C44)

(
ρv2

R −
(

C11 − C2
12

C11

))2

= C44(ρv2
R − C11)(ρv2

R)2. (7)

Equation (7) is solved, numerically, using Mathematica [10] for a nonzero real solution
vR = 2797 m s−1 that is less than v2 and v1. Equation (7) reduces to the well-known
Rayleigh wave speed in an isotropic material [11] such as a polycrystalline medium when
C44 = 0.5(C11 − C12),

v6
R− 4(C11 − C12)

ρ
v4

R +
2(C11 − C12)

2

ρ2

(
3 − C11 − C12

C11

)
v2

R +
(C11 − C12)

3

ρ3

(
C11 − C12

C11
− 2

)

=
(

vR

v2

)6

− 8

(
vR

v2

)4

+

(
24

v2
2

− 16

v2
1

)
v2

R − 16

(
1 − v2

2

v2
1

)
= 0, (8)

where v1 = √
C11/ρ and v2 = √

C44/ρ = √
(0.5(C11 − C12))/ρ. Equation (8) is solved

using mathematica and a positive, real root vR = 2172 m s−1 is obtained. In the literature [12],
the solution of equation (8) is quite often written as

vR = ηv2 = ((0.862 + 1.14ν)/(1 + ν))v2. (9)
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2.3. MD calculation

The atomistic computer simulation that is employed here is based on the classical MD method.
The input to any MD is a lattice file with positions and velocities of all the atoms in the system
at time zero. In the MD simulation, Newton’s equations of motion are integrated using a
numerical algorithm (Nordsik algorithm in our case [13]) to obtain the phase space trajectories
of all atoms in the system using a force function that is derived from a model potential Epot.
For a general discussion of MD, we refer the reader to the book by Allen and Tildesley [14].
The simulations reported in this paper employ an fcc lattice of Ni with 160 000 atoms for the
defect-free system. Newton’s second law when applied to atom i has the following form,

fi = miai = mi

dvi

dt
= d2ri

dt2
, (10.1)

fi = −∂Epot

∂xi

, (10.2)

where Epot is the total potential energy from equation (1.1). Numerical solutions of
equation (10.1) for N atoms in the system would lead to 3N equations for the positions
and 3N equations for the velocities of all the atoms in the system at each time step from their
values at the previous time step. To obtain values of positions and velocities of atoms at time
dt we need to have their values at time zero. Values of positions of atoms from their perfect fcc
crystalline site were used as their initial values at time zero. The initial values of the velocities
were set to zero.

The calculation is performed in the canonical ensemble using a viscous damping
temperature control presented in [15]. In this part, we summarize the highlights of the
method that is believed to be very effective in absorbing the strain waves emitted from the
crack tip [5]. A damping force F i = −ξvi is applied to atom i which in turn causes a rate
of change in its thermal energy by Fi · vi = −ξvi · vi = (∂/∂t)(3kBTi) = 3kB dTi/dt .
The rate of cooling of atom i can also be described using the following differential equation
dTi/dt = −α(Ti − Td), where τ = 1/α is the time constant of cooling of atom i and Td

is its desired temperature. Substituting dTi/dt from the second equation above into the first
equation leads to the −ξvi · vi = −3kBα(Ti − Td), where Ti = mv2

i /(3kB) and m are the
actual temperature and mass of atom i. Using the last equation for Ti we can then write the
following equation for ξ = αm(Ti −Td)/Ti . In order to avoid the singularity at Ti = 0, a small
number is added to the denominator of equation for ξ . The sample is divided into two parts:
skin depth and the inner part. Skin depth, in figure 1, is represented by a black band near
the boundary of the sample. The ramped viscous damping is applied to all four (top, bottom,
right, left) regions. In the inner part, fixed values of Td = 10 K and αm = 7.98 × 10−13 kg s−1

(α = 8.2 × 1012 s−1 = 8.2 (ps)−1) [15] are employed to control the temperature. In the skin
depth region, α and Td are ramped from their values at the inner boundary (α1 and Td1) to
those at the outer boundary (α2 and Td2) of the skin depth region. In the MD simulations
reported here, α1 = 8.2 (ps)−1, Td1 = 10 K, α2 = 2ωE (ps)−1, Td2 = 0 K, where ps stands
for pico-second. The skin depth region has a width of approximately 30 Å when the sample
is not under strain. It was suggested [5] that a maximum damping coefficient α2 = 2ωE is
sufficient to critically damp sound waves at Td2 = 0. The Einstein frequency is determined
using an approximate formula ωE = 2N

1/3
0 E1/2/(ρ1/6M1/3) presented in [16], where N0

is the Avogadro number, ρ is the density, M is the atomic mass unit and E is Young’s
modulus. Using the formulae above, we find α2 = 93.4 (ps)−1 and an Einstein frequency
of 46.7 (ps)−1.

For most of the simulations a time step of dt = 0.001 ps was employed for a total run
time of 40 ps or 40,000 time step. For some of the simulations dt was increased to 0.0015 ps



1414 M Karimi et al

Figure 2. A typical graph of displacement of the crack tip versus simulation time for a crack
propagation run with 1.5G0 load.

with a very small effect on the energies. The positions of the atoms after every 200 time steps
were stored in an output animation file to be used, later on, as input to a graphic engine for
the animation of our results. The output file has about 100 frames. In principle, positions
of all atom as well as their types could be stored in the animation file. The large storage
requirement of animating the whole lattice and the fact that most of the interesting dynamics
takes place near the crack region led us to animate only those atoms that are close to the crack
region. Therefore, four layers, a total number of about 6400 atoms near the crack region, were
employed in each frame.

3. Results and discussions

3.1. Crack propagation in defect free crystal

The crack propagation is studied on a [0 0 1] plane of the fcc nickel crystal. The sample
with a starter (0 0 1)[1 0 0] crack system is first strained by an amount that corresponds
to the Griffith load G0 = 2γs = 3.76 J m−2. Strain ε corresponding to each load Gs is
calculated from equation (3) which in turn can be simplified by substituting for υ = 0.27
and E = 317.5 × 109 J m−3, Gs (J m−2) = 17.1Wε2, where W is in Angstrom. In the
present case, W = 174 Å and Gs only depends on the strain, Gs (J m−2) = 2979.4ε2. All
the atoms of the slab are displaced, uniformly along the z-direction, by an amount u that is
equivalent to the desired strain ε. Then the atoms of the upper and lower most layers are
held fixed in the z direction and the forces in the x and y directions are set to zero. The
slab is then equilibrated for 20 ps at a fixed temperature of 10 K. Subsequent higher strains
are applied to the system on top of the G0 to produce total loads of 1.2G0, 1.5G0, 2.0G0,
2.5G0, 3.0G0, 4.0G0 and 5.0G0. The slab at each load is then equilibrated for 20 ps using the
viscous ramping temperature control. The crack-tip position is determined by the inspection
of the relative distance between atoms of the upper and lower planes of the crack. Using
the graphical engine Xmakemol, one can search for the first broken bond by comparing the
separation of pairs of atoms with a value for which the bound is believed to be broken. The
crack-tip position determined this way is accurate within one nearest neighbor distance. A plot
of crack-tip position versus time for a load of 1.5G0 is given in figure 2. The slope of the crack-
tip position versus time will become constant after a very short transient time. The velocity of
the crack at 1.5G0 load is equal to the slope of linear part of figure 2 which is about 1030 m s−1.
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Table 1. v/vR versus Gs, where G0 = 3.76 J m−2, v is the velocity of the crack in m s−1 and
vR = 2797 m s−1.

v/vR 0.283 0.368 0.530 0.594 0.643 0.697 0.727
Gs (J m−2) 1.2G0 1.5G0 2.0G0 2.5G0 3.0G0 4.0G0 5.0G0

Figure 3. Variation of relative crack speed (v/vR) with static strain energy release rate Gs from
the simulation (points), compared with the continuum prediction (solid line).

Using Rayleigh speed of vR = 2797 m s−1 a value of 0.368 is obtained for v/vR for the load
of 1.5G0.

Steady state velocities of the crack at different loads indicate some interesting features.
Between loads G0 to 1.2G0 the crack is stationary and not moving. For loads greater or equal
to 1.2G0, the crack is moving with a noticeable speed of 792 m s−1 which is about 37% of the
Rayleigh speed. This suggests that the terminal speed of a brittle crack at low temperature
cannot be less than a critical value and there is a forbidden velocity band from zero to the value.
This feature is observed in other simulations [17]. Our simulations, at least at the time scale
performed here, confirm this feature of brittle crack propagation.

We first calculated the critical value for propagation of the crack by increasing the load
on a stationary crack. When we calculated the critical value by ramping down the load on a
moving crack, we found our result for Gs was unchanged to an accuracy of 0.1G0.

Other loads are applied to the sample and the corresponding v/vR is calculated for each
load and reported in table 1. A graph of v/vR versus Gs of data from table 1 along with the
prediction of continuum fracture mechanics are given in figure 3. By extrapolation of the solid
curve in figure 3, a minimum value of 3.76 J m−2 is obtained for Gs. This value of Gs is exactly
equal to G0.

The smallest load that caused the crack to propagate is about Gc = 1.2G0 = 4.54 J m−2.
This is obviously different from the corresponding value of the surface energy G0 = 2ν(1 0 0) =
3.76 J m−2, where ν(1 0 0) = 1.878 J m−2 is the surface energy of the (0 0 1) plane. It should
be emphasized that the EAM potential employed here was fitted to a much richer database
that includes not only the experimental data but also the first principles data. Specifically,
the surface energies ν(1 0 0), ν(1 1 0), and ν(1 1 1 1) were included in the fitting data. The difference
between Gc and G0 is attributed to the lattice trapping which is in turn a result of the discrete
nature of the lattice [18]. The discrete lattice of a crystal generates a periodic potential with
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Table 2. Values of εc and Gc for crack propagation in presence and or absence of defects. Gc is
in unit of J m−2. Gc1 and Gc2 are defined in the paper.

Configuration No defects Figure 5(a) Figure 5(b) Figure 5(c) Figure 5(d) Figure 5(e)
figure 4

Crack path Unshifted Shifted Shifted Unshifted Unshifted Unshifted
Critical load 1.2G0 1.6G0 Gc1 = 1.10G0 Gc1 = 1.10G0 Gc1 = 1.10G0 Gc1 = 1.10G0

Gc2 = 1.6G0 Gc2 = 1.15G0 Gc2 = 1.15G0 Gc2 = 1.15G0

Figure 4. Sketch of the atomic configuration near the crack tip for the lattice with no defects.
The arrow represents location of the crack tip.

barriers and wells that a crack needs to overcome to propagate. The heights of the barriers
depend on the detail of the interatomic potential model and the lattice structure [18]. A crack
could be trapped in these potential wells and, therefore, be arrested even though the applied
load is greater than the Griffith load G0. Using a different EAM Ni potential [19], for exactly
the same system size, Gumbsch et al [5] obtained a value of Gc = 1.04G0 and, therefore,
a smaller lattice trapping.

3.2. Crack propagation in crystal with defects

Two lines of vacancies are introduced into the lattice of 160 000 atoms in various positions
near the crack tip. Depending on where the lines of vacancies are introduced in the lattice
a total of five lattices with defects are constructed (figures 5(a)–(e)). Each vacancy line is
along the crack front (y-direction) and includes four atoms in the computational cell. The
two vacancy lines have mirror symmetry with respect to the xy-plane and the lattice with
these defects has 159 992 atoms. The corresponding critical values εc and Gc were obtained
and reported in table 2. The values of Gc are determined to an accuracy of 0.05G0. As
seen from table 2, Gc for the lattice with defects (Gcd) is different from that in the defect-
free lattice (Gc0). Our calculations indicate that Gcd could be greater or smaller than Gc0

depending on the defect locations in the lattice. If lines of vacancies are introduced in
locations shown as empty circles in figures 5(a) and (b), then Gcd > Gc0. In addition,
the crack shifts up or down a layer as they propagate beyond the defects. If lines of
vacancies are introduced in locations shown as empty circles in figures 5(c), (d), and (e),
then Gcd < Gc0. In figures 5(b)–(e), there are two Gs, Gc1 and Gc2. The former (Gc1)
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(a) (c)

(e)(b) (d)

Figure 5. Sketches of the atomic configurations near the crack tip for the lattices with defects.
Two lines of vacancies are introduced along the crack front (y-axis) in a symmetric fashion. The
lines of vacancies are indicated as open circles. The arrow represents location of the crack tip.

represents the critical value of G for the starter crack tip to propagate to the plane containing
the vacancy lines. The latter (Gc2) is the corresponding value for the crack tip at the location
of the vacancy lines to propagate further. Our calculations indicate that Gc1 < Gc2. In
configurations 5(c)–(e) the crack continues along the original crack axis as it passes the
defects.

In order to better understand the defect results for G, we examine the strain energy near the
crack tip with G < Gc for both the defect-free lattice and the lattices with lines of vacancies.
The lattice without defects is relaxed and the potential energy of atom i, E1i , is calculated. The
lattice without defects is loaded to 1.1G0 (3.66% strain), and the relaxed energy of atom i, E2i ,
is calculated using energy minimization. The strain corresponding to 1.1G0 is applied to the
atoms of the upper and lowermost layers in small increments. This adiabatic way of straining
the system is important for the minimization procedure to converge faster. The strain energy
of atom i, �Ei = E2i − E1i , is the change in potential energy of atom i due to the applied
strain. Similarly, calculations are performed for the lattices with two vacancy lines and a load
of 1.1G0. A graph of the strain energy per atom �Ei as a function of layer number along the
crack (in the x-direction) for each defect lattice is plotted in figures 6(a)–(d). For comparison,
the strain energy along the crack of the defect-free lattice is plotted in each figure. Even though
this load is less than the critical load for the propagation of the crack, an examination of the
strain energy distribution can explain the observed fracture behaviour. In figure 6(a) the peak
in the strain energy is shifted away from the original crack tip position at atom layer 7 to layer 8
and reduced in magnitude. Thus, the two vacancy lines at the crack tip in the configuration in
figure 5(a) have effectively formed a new blunted crack tip. This indicates that a larger strain
than was needed in the defect-free lattice will be needed to produce the strain field at the crack
tip necessary to break the bond and advance the crack. In figure 6(b) we see a different effect.
Here the lines of vacancies are out in front of the crack tip and they produce an enhancement
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(a)

(b) (d)

(c)

Figure 6. Strain energy per atom for the defect-free configuration in figure 4 and the configurations
with defects in figures 5(a)–(d) with a load of 1.1G0. In each graph, the solid line plus diamond
is the strain energy per atom for the lattice with no defects and the dashed line plus star are the
corresponding graphs for the lattices with defects. Figures 6(a)–(d) correspond to the configurations
in figures 5(a)–(d), respectively. First arrow at layer 7 represents the location of the crack tip. The
second arrow represents the location of the vacancy lines.

in the strain energy at the crack tip over the defect-free case. This indicates that a strain
energy at the crack tip sufficient to propagate the crack can be achieved with a lower applied
strain than was needed in the defect free lattice. When the crack reaches the plane containing
the pair of vacancy lines, it will be identical to the configuration in 5(a). Now the larger Gc

corresponding to this configuration will be needed to advance the crack. The pair of adjacent
vacancies merge with the crack tip to form a blunted tip. When the crack continues to propagate
from this blunted tip, it shifts one lattice space while continuing in the same [1 0 0] direction.
For both configurations 5(c) and (d) with the pair of vacancies symmetrically displaced from
the crack axis, the plots in 6(c) and (d) show that the strain energy at the crack tip is enhanced
over the defect-free case. Therefore, a lower applied strain will initiate crack propagation in
these defective lattices than in the defect-free lattice. Gc increases as the crack tip approaches
the defects, but remains slightly less than in the defect-free lattice due the enhancement effect
on the strain at the crack tip by the vacancies.

For the configurations studied, the defects tend to promote crack propagation towards
them. Note these defect configurations are all symmetrical about the crack axis, so the crack
actually propagates towards the symmetry point between the defects. If the crack runs into
the vacancies, it is blunted and a larger strain will be needed to be applied to propagate the
crack. This demonstrates the ability of these defects to retard crack propagation. However, the
separated vacancy lines lower Gc showing a behaviour similar to a weakening of the strength
of the material. This effective weakening in material strength is consistent with the results
of two papers given in [12]. Both papers in [12] give statistical studies of cracking in the
presence of random distributions of vacancy and Frenkel defects in copper and α-Fe single
crystals, respectively.
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4. Conclusions

MD simulations using the EAM were conducted to investigate brittle fracture under mode I
loading in a Ni single crystal in the presence of vacancies. The crack system (0 0 1)[1 0 0] in
a slab of 160 000 atoms was studied. First, the fracture properties of the defect free system
were investigated. Then defects consisting of lines of vacancies were introduced in various
positions near the crack tip. For both systems, the critical loads and strain energy distributions
around the crack tip were investigated. By examining the change in strain energy for each
atom in the region around the crack tip and defects, one can better understand how defects alter
the fracture process.

For the Ni system studied, the vacancy lines were shown to enhance strain fields at the
crack tip, resulting in lower critical strain energy release rates than in defect-free crystals.
Thus, the effect was to weaken the material. However, when the crack tip merged with the
vacancy lines the crack tips became blunted, reducing the strain energy at the tip and effectively
toughening the material to fracture. Depending on the placement of the defects and the path
of the crack, the material could be either weakened or toughened to fracture.
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