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Summary 
 

 This paper is concerned with the solution of boundary-element models based 
on substructuring. Structured matrix-vector products and the matrix-copy option 
are proposed to increase the efficiency of algorithms based on Krylov solvers. 
The former technique was designed to avoid the excessive number of conditional 
tests during solver iterations, and the latter one, to avoid the repeated calculation 
of coefficient matrices for identical subregions. Potential applications of the 
algorithm to composite materials, and to develop parallel codes, are noted. 
 

Introduction 
 

Mainly in the 90s, iterative Krylov solvers began to be widely considered in 
the development of computer codes to solve engineering problems, including 
those based on Boundary Element Methods. The major advantage of this kind of 
solver is their efficiency for solving large-order systems and their suitableness for 
developing parallel codes. In Computational-Fluid-Dynamics (CFD) simulations, 
for instance, they have been commonly applied to develop parallel finite-element 
codes [1-3]. 
  

For Boundary Element Methods, Krylov solvers have also been successfully 
applied, in particular for substructuring algorithms [4-5]. In this connection, 
optimized data structures for a generic number of coupled subdomains, with 
complete exclusion of zero blocks, have been proposed [6-9]. This paper 
considers two further improvements to these algorithms: the structuring of 
matrix-vector products (SMVP) involved in the iterative solvers and the 
implementation of the matrix-copy option (MCO). The first technique was 
designed to exclude the many conditional tests, necessary when the matrix-vector 
products are left unstructured (UNSMVP). The second technique is designed to 
avoid calculating and assembling, repeatedly, the coefficient matrices for 
identical subregions.  
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Generic Coupling of BE Models 
 

As an iterative solver does not transform the coefficient matrix, formats can 
be devised that reduce memory requirements and solution CPU time. Here, a 
subregion-by-subregion data structure, described below, is used.  

 
Generically (for sn  subregions), the corresponding subsystems of boundary 

element equations can be written as 
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where, ijH  and ijG  denote the usual BE matrices obtained for source points 

pertaining to subregion i'  and associated respectively with the boundary vectors 

iju  and ijp  at ij( .  Here ij(  with ji )  is the interface between i'  and j' , and 

ii(  is the outer boundary of i' . In the subregion-by-subregion data structure 
considered herein, these subsystems are not explicitly assembled into a global 
system, but separately stored. Thus, the many zero blocks, unavoidably present at 
these systems, are completely excluded [9]. Moreover, it is assumed that 
discontinuous boundary elements are employed, so that only compatibility and 
equilibrium conditions at the interfaces, given by 
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have to be imposed for coupling the BE models. This simplify enormously the 
coupling algorithm since no traction-continuity condition together with 
undesirable additional subregions has to be used for simulating inner edges and 
corners [8]. 
  

A first topic addressed in this work is the structuring of the matrix-vector 
products embedded in the iterative solver. Here particularly, the J-BiCG solver 
[4, 6] is adopted, for which the matrix-vector products of the type jpAD )( 1%  and 

*1 )( j
T pAD%  have to be computed, where A  and D  are the global matrix of the 

coupled system and its corresponding diagonal matrix (Jacobi preconditioning), 
respectively. In previous versions of the code [9], unstructured matrix-vector 
products (UNSMVP) have been considered, what means that no column re-



ordering of the subregion matrices have been carried out, and so, conditional tests 
to identify the type of boundary condition present at each degree of freedom of 
each subregion (if interface or prescribed boundary value) had to be performed 
along all iterations of the solver.      
 
 In this paper, structured matrix-vector products (SMVP) are taken into 
account, meaning then that the columns of the matrix of a given subregion, say 

i' , are actually re-ordered so as to get its coefficients grouped into different 
blocks. Three blocks are adopted: a first one associated with interfaces ij(  for 

which ji . , a second one associated with the outer boundary ii(  (at which 
boundary values are prescribed), and a last one associated with interfaces ij(  for 
which ji /  (see equation 2). As one can infer, the data structure shown in 
equation (1) was exactly that adopted. Thus, matrices A and B for the i-th 
subregion, after interchanging columns for introducing the boundary conditions 
at ii( , have the following generic aspects: 
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In the code, each block is delimited by an initial and a final column, calculated 
for each subregion matrix.    
 
 A second topic included here is the implementation of matrix-copy option 
(MCO), which might be very useful for modeling problems which may involve 
several identical subregions such as identical inclusions or layers in composite 
materials (Figure 1). By considering the matrix-copy option, a matrix for a 
subdomain which is identical to another subdomain whose matrix has been 
already assembled has no longer to be calculated; it has to be only read from the 
memory space into where the matrix of an identical subdomain has been copied. 
In this way, CPU time and, possibly, allocating memory may be saved. Notice 
that for solid mechanics problems, rotation transformation of the copied matrices 
may be further necessary. 
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Figure 1. Composite material 

 
Results and Discussion 

 
 To discuss further the importance of the techniques implemented, the holed 
rod shown in Figure 2 is analyzed. Its length is 1500 mm, and its cross section 
has external perimeter with 140 mm width and 225 mm height. The rod-wall 
thickness is 50 mm. The elasticity modulus and Poisson's ratio adopted are 

3102050#E  MPa  and 30.0#1  respectively. The rod is subjected to a 
normal pressure of 1.0 MPa . In Figure 2(a) and 2(b), the general aspect of the 
whole mesh and the coupled subdomains may be visualized. In Figure 2(c), 
details of each subregion are shown. In sum, the BE model is constituted of six 
identical subregions, each one with 144 boundary elements and 432 nodes, 
corresponding to total of 1296 degrees of freedom per subregion and of 7776 for 
the global system. 
 

(a) 

(b)

(c)

 
Figure 2. BE mesh adopted 



 
 For the rod dimensions chosen, the response is well described by the one-
dimensional bar theory. The results agree pretty well with the analytical ones 
(error less than 0.4% at several nodes observed) and are not presented here. 
Results in terms of number of iterations and CPU times are given in Table 1, 
where nit denotes the number of iterations and n the system order.  In Table 2, 
the matrix-assembly CPU times using and not using matrix-copy option (MCO) 
are shown. The solver has been stopped when 5
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Table 1. Efficiency parameters 

 nit solver CPU 
time (s) 

CPU time/nit nit/n 

SMVP 2141 242 0.11 0.275 
UNSMVP 2165 290 0.13 0.278 

 
Table 2. Matrix-assembly CPU time (s) 

 with no MCO with MCO 
SMPV 87 18 

  
For this single test, a CPU time reduction per iteration of about 15% is obtained 
using the SMPV option (see Table 1). The small variation between the number of 
iterations using SMVP and UNSMVP is actually expected since the order of 
operations are different in these strategies, and arithmetic properties like the 
associativity of the addition operation are not valid in the presence of the finite 
representation of numbers on the computer. Therefore, to measure the CPU-time 
performance difference, the relation CPU time/nit was adopted. The relations 
nit/n measured hints the good performance of the J-BiCG solver. As seen, the 
CPU time for assembling the global coupled matrix not using MCO (matrix-copy 
option) is about five times that using MCO. 
 

Conclusions 
 
 For the numerical test done, the efficiency of the coupling algorithm 
improved somewhat by adopting structured matrix-vector products (about 15%). 
Of course, for larger problems, this increase in efficiency will be more 
significative since more conditional tests have to be performed. Concerning the 
matrix-copy option (MCO), it considerably reduced, as expected, the assembly 
time of the global system, and might be very useful for modeling problems with 
several identical subdomains such as in some composite materials. Furthermore, 
if the matrix-copy option is allied with unstructured matrix-vector products, 
memory space may be additionally saved. As a natural consequence of the 



domain-decomposition strategy considered, the algorithm is pretty suitable for 
developing parallelized BE codes. 
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