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Abstract

A numerical algorithm based upon the residue calculus for computing the three-dimensional anisotropic elastic Green’s function and its
derivatives has been presented by, among the others, Sales and Gray. Although this residue approach is in general faster than the standard
Wilson—Cruse interpolation scheme, the convergence rate and accuracy can seriously degrade in the neighborhood of a non-simple pole. In
this paper, explicit expressions, also based on the residue calculus, are obtained for computing the Green’s function and its first-order
derivatives in the presence of a multiple root. Further, the computation time for the residue algorithm proposed here has been significantly
reduced by implementing the double-subscript-notation for the elastic constants that define the Christoffel tensor.
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1. Introduction

A computational analysis using boundary integral
equations requires numerous evaluations of both the
Green’s function (or fundamental solution) and its deriva-
tives [1-3]. While these functions are relatively simple for
many problems, e.g. potential theory or isotropic elasticity,
they are far more complicated in case of materials of general
anisotropy. An effective scheme for evaluating these
complicated functions is therefore crucial for the success
of an anisotropic boundary element analysis (BEA).

Approaches for computing the three-dimensional (3D)
anisotropic elastic Green’s function have been investigated
by numerous research groups, including Nakamura and
Tanuma [4], Ting and Lee [5], Wang [6], Sales and Gray
[7], Pan and Yuan [8], Tonon et al. [9], and Phan et al. [10].
While most of the above studies focus on the Green’s
function for an homogeneous domain, the work by Pan and
Yuan [8] was devoted to the bimaterial Green’s function.
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Among the others, technique based upon the residue
calculus has been pursued in [5-7,9,10]. The results are
obtained in terms of the residue of poles whose positions are
determined by the roots of a sixth degree polynomial. While
the work of Ting and Lee, as well as Wang primarily
focused on the derivation of explicit expressions for the
Green’s function, Sales and Gray devoted efforts to a
practical algorithm for computing this function and its
derivatives. Recently, numerical implementations for the
calculation of the Green’s displacements and stresses, as
well as their derivatives have also been introduced by Tonon
et al., and a comparison study of the two algorithms [7,9] is
under investigation [9]. A limitation of both these studies is
that all the roots of the sixth degree polynomial are assumed
to be distinct which is not always the case. An explicit
solution in terms of the Stroh eigenvalues for the 3D
anisotropic elastic Green’s function is presented in [5]
where the solution remains valid for multiple roots. While
this solution is general, it appears to be lengthier than the
explicit expressions derived separately for the cases of
simple, double and triple poles that are presented in this
paper. Further, the development was limited to the Green’s
function only. In this work, analytical expressions for not
only the Green’s function but also its first-order derivatives,
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in the presence of a multiple root, are discussed herein as
they are required by a standard BEA.

Although the algorithm proposed by Sales and Gray is
technically sound, it has been shown that numerical
problems arise when the sixth degree polynomial has
multiple roots. In this situation, or when the roots are nearly
equal, the Newton algorithm employed to calculate the root
can converge slowly. This issue has been partly addressed in
a short publication [10] where the capability to evaluate the
Green’s function (but not derivatives) in case of a multiple
pole was discussed. The evaluation of both the Green’s
function and its first-order derivatives, which is required in a
standard boundary integral analysis, is the subject of this
full-length paper. Explicit expressions based on the residue
calculus are fully derived for the cases of double and triple
roots. In addition, the present algorithm implements the
double subscript notation for the fourth-rank elastic constant
tensor Cjy,,, and consequently requires less memory storage
and is more computationally efficient than that in [7].
Numerical results for the Green’s function and its first-order
derivatives in the presence of both double and triple roots
are in excellent agreement with those obtained by means of
direct integration using the symbolic computation package
Maple.

2. Residue calculus approach to the Green’s function

2.1. Green’s function Uy

Consider an unbounded anisotropic elastic body sub-
jected to a point load. Let Uy(P,Q) be the Green’s function
corresponding to the displacement field in the x; direction,
at x, produced by the load in the x; direction at x,. The
function Uj(Xo,X) can be expressed as a line integral [11,12]
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where X is the source point, and x is the observation or field
point. Here, § € R3, K} is the Christoffel tensor defined in
terms of the elastic constants Cjy, of the material [13]

Kix = Citm&i&m» ()

and r=||x —xy||. The integration path is the unit circle in the
plane having normal x — X,

S'=8'xxp) ={E€R| |IE]l =1,E-(x—xy) =0} (3)

2.2. General solution of the Green’s function Uj

In a spherical coordinate system located at the source
point X, (see Fig. 1), the contour integral in Eq. (1) may be
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Fig. 1. A spherical coordinate system.
written as
_ 21 |
Up(0,9) = L Kj (8(1, 0, ¥))dt, “)

where 6 and Y are spherical angles defining the unit
direction vector (x —Xp)/r (0 <y <7 denotes the polar angle
measured from the equator, and 0 <y <27 the azimuthal
angle in the x;x, plane from the x; axis). The parametric
equation of the unit circle of the integration path is given by

£1(1,0,9)
:(t,0,9)
£3(1,0,9)
sin(f#)cos(?) + cos(#)cos(y)sin(r)
= ¢ —cos(f)cos(r) + sin(f)cos(y)sin(t) . 5)
—sin(y)sin(z)

&(1,0,9)

The integral in Eq. (4) can be evaluated using residue
calculus by transforming the integrand into a rational
function, the range of integration becoming the real axis.
One way to achieve this transformation is to use the change
of variable [14]:

Z = tan(t). (6)

With this transformation, the components of K;l become
rational functions of Z, and Eq. (4) can be written in the
form [7]

* Pyp(2)
—w O(Z)

T(0,9) = 2J dZ = 4wio, 0

where P;i(Z) and Q(Z) are the fourth degree and sixth degree
polynomials of Z, respectively; and ¢ is the sum of the
residues Res(4,) of P(Z)/Q(Z) at the poles 4, of O(Z) which
lie in the upper half plane. From now on, Py(Z) and Q(Z)
should be understood as functions of not only Z, but also of ¢

and y, i.e. Py(Z)=Pj(Z,6,¥) and Q(Z)= Q(Z.0.9).
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Note that [7] only considered Res(4,) for the case of a
simple pole, i.e. distinct roots (4;% A, j#k). In general,
Res(4,) can be determined from the expression [15]:

1 dm! W Pk@
Rest) = G =1 [dzm—1 {(Z 7 HH;
3
e In case of a simple pole (m=1)
3
Up(0,9) = 4mi » Res(A,), 9)
n=I
where
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In Eq. (10), the polynomials Pjy(4,) and Q,)(4,) may be
written in the following forms:
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where pji; is a coefficient associated with the /th-order
term in Eq. (11), and g is a coefficient associated with
the sixth-order term in Eq. (12).

e In case of a double pole (m=2), for example, A, = A,, one
gets

Uy (0, y) = 4mi[Res(4,) + Res(43)], (13)

where n could either be 1 or 2, and (a subscript comma
implies partial differentiation with respect to the variable
following)
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e In case of a triple pole (m=3), we have A; = A, = A3, thus
l_]jk(ﬁ, Y) = 4miRes(4,), (18)

where n could either be 1, 2 or 3, and
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3. Residue calculus approach for the first-order
derivatives of Uj(x,xo)

According to Egs. (1) and (4), the partial derivatives of
Uji(x,X0) with respect to x or X, can be expressed in terms of
those of Ujk(ﬁ, ¥) with respect to angles 6 or y. In the
following, o represents either angle.

e In case of a simple pole (m=1) in Q(Z)

© Pra@)02) = Pr2)0.2) -,
— 0*(2)

3
= 4mi ) Res(h,). (22)
n=l1

Upo0,9) =2 J

As Q%(Z) has three double poles, use of Eq. (8) yields

9
z=2,

(23)

RCS(A ) = i ija(Z)Q(Z) - P]k(Z)Qa(Z)
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where
- 3 -
Ow(2) = q6(Z — 4,) H(Z — ANZ = 4,). (24)
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oFn

Noting that Q(4,,) =0, the result is,

Res(4,)
ij,a(An)Q,Z(An) - ij,Z(An)Q,a(An) - ij(xn)Q,aZ(/-{n)
(A
2ij(An)Q,a(An)Q(n),Z(/-{n) ) (25)
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In case of a double pole (m=2) in Q(Z), for example,
A=4, (i.e. n=1 or 2), one gets

Up.o(0,4) = 4mi[Res(4,) + Res(A3)], (26)

where Res(4;) is determined by Eq. (23). As 0*(Z) has a
quadruple pole, Res(4,,) is given by Eq. (8) as follows:

RCS(A ):l d_3 P]k,a(Z)Q(Z) _P]k(Z)Q,a(Z)
"6 |dZ? 0./(2)
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Z=2,
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0ui(2) = 46(Z = 2)Z — L) (Z — Ja). (28)
More specifically, Eq. (27) is represented as
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where all the polynomials are evaluated at Z=21,, i.e.
Pj=Pj(4,) and so on.
In case of a triple pole in Q(Z) (im=3), we have

A O , (29)
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The result is
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4. Numerical implementation and computation time

As in Ref. [7], the three roots 4, are found using
Newton’s method in conjunction with Horner’s algorithm
[16] for efficient polynomial evaluation.

Once the roots have been found, the quantities |A; — 25|,
[Aa— A5 and |A;—2;| are compared with ¢=10"* to
determine whether a multiple root occurs. Then depending
on the order m of the roots, appropriate equations among (9),
(13) and (18) need be selected to compute the tensor
elements of Uy.

It is well known that the description of both elastic strain
and stress tensors involve only six independent components,
conveniently identified using a double subscript notation.
As these quantities, as well as Kj in Eq. (2), are symmetric
with respect to an interchange of the subscripts, it will be
convenient to abbreviate each double subscript notation uv
in Kj = CjpomZim Eim = /6, to a single subscript (Voight
notation) running from 1 to 6; i.e. uwv=11, 22, 33, 23/32,
31/13, 12/21. Due to these symmetries, the fourth-order
elastic constant tensor Cj, can be replaced by 21
independent components ¢; of a (6X6) symmetric matrix
as widely employed in the literature. As a result, the six
independent components of the tensor Kj are simply
given by

Ky [c11 ce6 55 2es6 2¢q5 2cq6
K> Co6 C22 Caq 2¢y4 246 2ea6
Kz | |55 caq €33 2c3 2¢35 2eys
Koy [ |ese ean sa (e ean) (e36+cas) (eas +cao)
K3, C15 Ca6 C35 (€351 Ca5) (€13 T C55) (€14t Cs6)
K1 LC16 €26 Ca5 (Ca5 +Ca6) (€14t Cs56) (C1oF Cop)

£1&

£:6

£3¢3

X , (34)
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The use of single subscript notation eliminates the
unnecessary storage for symmetric components in the elastic
constant tensor Cju, and the Green’s function Ujy: the
handling of a (3X3X3X3) fourth-rank tensor Cjy,, and
(3X3) matrices Kj and P has been replaced by a (6X6)
matrix and (6 X 1) vectors as shown in Eq. (34). However, the
main consequence is computational efficiency. The compu-
tation times resulting from this numerical implementation are
even be better than those reported in Ref. [7].
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—~ 2e07
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Fig. 2. Discrepancy of U, 4(f, 7t/2) for germanium.

5. Numerical examples
5.1. Simple roots

To start, U i 1s evaluated in case of distinct roots (simple
poles) in the polynomial Q(Z) using the numerical
implementation proposed above. The materials germanium
(Ge) and tin (Sn), which, respectively, are cubic and
tetragonal crystal systems, are employed. The elastic
constants for germanium are (in units of 10'° Pa) [17]
c11=12.85, ¢1,=4.83 and c44=6.68. Tin has a piezo-elasto-
dielectric matrix type defined by the following six elastic
constants (in the same units) [17]: ¢;;=7.35, c33=8.7,
C44=2.2, C66=2.265, C12=2.34 and C13=2.8.

Residue calculus results for Ujkya(ﬁ, Y) are compared
with those obtained via direct integration of Eq. (7) using
the symbolic computation package Maple. The discrepan-
cies of Uy (8, 7/2) and U3 (0, 7/2) for germanium, and
Uiz4(m,¥) and Uss (7, ¢) for tin are shown in Figs. 2-5,
respectively. Excellent agreements can be observed con-
sidering that the elastic constants c; are typically only
known to three significant digits.

3e-07 T T T T T T

2e-07

1le-07

AU, (6.1/2)
o

—1e-07

—2e-07

3007 . 1 . 1 . 1 .
0 0.5 1 15 2

o/m

Fi

=

g. 3. Discrepancy of U3 (8, 70/2) for germanium.



A.-V. Phan et al. / Engineering Analysis with Boundary Elements 29 (2005) 570-576 575

=

—4e-07 |- -

AUlZ,O(T[’ g)

—6e-07

—8e-07

_1e.06 . 1 . 1 . 1
0 . .

Fig. 4. Discrepancy of U, (T, ¥) for tin.

5.2. Multiple roots

In this section, the evaluation of U (0, ¥) in case of
multiple roots in the polynomial Q(Z) is carried out to
validate the numerical implementation of Egs. (13) and (18).
For these tests, itis convenient to prescribe Pj(Z) and Q(Z) as
functions of the angles 6 and y, rather than use a particular
material. The gradients Uy (7/2,0) and Uy y(1/2,0)
are evaluated using residue calculus and are compared with
those obtained from the direct integration of the following
equation using the package Maple:

. [F d(P@D
Vb = 2J—w@{ 02) }dz' 2

e Double pole: Consider the following polynomials:

Py(Z) =[40 — cos(9)1Z* + 2 cos())Z® — [5 + sin(y)|1Z°
— 10 sin(y)Z + 25, (36)

4e-07

2e-07

AU33I Llj(Tr,L]J)
o

—2e-07

—4e-07

Wit

Fig. 5. Discrepancy of U3 (7, ¥) for tin.

Table 1
Evaluation of U ik,a(T0/2,0) in case of a double pole

Residue calculus

—9.222024040
—2.787466587

Maple solution % Discrepancy

—9.222024152  1.214X1076
—2.787466638 1.830X 1076

Uiy 9(7/2,0)
ij(arlz, 0)

and
0(Z) =3 sin(f)cos(W)Z°® + 18Z° 4+ 93[1 — cos(0)]Z*
+180Z° + 513[1 + sin(y)1Z> + 546Z
~+ 2535 sin(6). (37)
This is the case of a double pole since at §=m/2 and
¥v=0
0(Z) =32Z° +187° +937* 4+ 180Z° + 5137 + 546Z
+2535 =3(Z — M\)Z — 1)2(Z — 2)(Z — 1),
(38)
where A;=1+2i, and A, = A3 =—2+ 3i.The results
obtained from residue calculus and from using the
symbolic package Maple are shown in Table 1 along
with the percentage discrepancies. The data suggest that
the residue calculus implementation for double-pole

cases is very accurate.
e Triple pole: Now, consider the following pair:

Py(Z) = sin()Z* — sin’ (g) 73

—[1 — cos(D))Z* + cos(W)Z +1 (39)
and
0Z)=2 sin(@)cos(\//)Z6 — 36 cos(20)Z°

+2762* + 1152Z° 4 27601 — sin(26)]2>
+3600Z + 20001 + sin(y)]. (40)

At §=m/2 and Y =0, Q(Z) has a triple pole since it can be
written as

0(Z) =22° +36Z° +276Z* + 11522°
+2760Z* + 3600Z + 2000

=2Z - 1)Z - 1), 41)
Where A] = Az = A3 =_3 + 1

Table 2
Evaluation of U ik« (T0/2,0) in case of a triple pole

Residue calculus

—65972.66056
—2115.666303

Maple solution

—65972.66046  1.516X1077
—2115.666308 2.363X 107"

% Discrepancy

Up p(1c/2,0)
Uy (/2,0)
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Again, the residue calculus results are compared with those
obtained using the package Maple as shown in (Table 2),
and it is seen that they can be considered as identical.

6. Conclusion

Explicit expressions based upon the residue calculus for
the 3D anisotropic elastic Green’s function and its first-
order derivatives are obtained for the case of a multiple pole.
A new numerical scheme is proposed which improves the
computational effectiveness of the algorithm initially
proposed by Sales and Gray [7] through the use of double
subscript notation in expressing the fourth-order elastic
constant tensor. Numerical results for the Green’s function
and its first-order derivatives in the presence of both single
and multiple roots are in excellent agreement with those
obtained using the symbolic computation package Maple.
A numerical implementation of the residue calculus for the
calculation of the second derivatives of the 3D anisotropic
elastic Green’s function in the presence of a multiple root is
currently being pursued by the authors as these derivatives
are required in a BEA based upon the hypersingular
(traction/stress) boundary integral equation, such as a dual
BEA [18] or a symmetric Galerkin BEA [19].
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