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Abstract

A numerical algorithm based upon the residue calculus for computing the three-dimensional anisotropic elastic Green’s function and its

derivatives has been presented by, among the others, Sales and Gray. Although this residue approach is in general faster than the standard

Wilson–Cruse interpolation scheme, the convergence rate and accuracy can seriously degrade in the neighborhood of a non-simple pole. In

this paper, explicit expressions, also based on the residue calculus, are obtained for computing the Green’s function and its first-order

derivatives in the presence of a multiple root. Further, the computation time for the residue algorithm proposed here has been significantly

reduced by implementing the double-subscript-notation for the elastic constants that define the Christoffel tensor.

q 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

A computational analysis using boundary integral

equations requires numerous evaluations of both the

Green’s function (or fundamental solution) and its deriva-

tives [1–3]. While these functions are relatively simple for

many problems, e.g. potential theory or isotropic elasticity,

they are far more complicated in case of materials of general

anisotropy. An effective scheme for evaluating these

complicated functions is therefore crucial for the success

of an anisotropic boundary element analysis (BEA).

Approaches for computing the three-dimensional (3D)

anisotropic elastic Green’s function have been investigated

by numerous research groups, including Nakamura and

Tanuma [4], Ting and Lee [5], Wang [6], Sales and Gray

[7], Pan and Yuan [8], Tonon et al. [9], and Phan et al. [10].

While most of the above studies focus on the Green’s

function for an homogeneous domain, the work by Pan and

Yuan [8] was devoted to the bimaterial Green’s function.
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Among the others, technique based upon the residue

calculus has been pursued in [5–7,9,10]. The results are

obtained in terms of the residue of poles whose positions are

determined by the roots of a sixth degree polynomial. While

the work of Ting and Lee, as well as Wang primarily

focused on the derivation of explicit expressions for the

Green’s function, Sales and Gray devoted efforts to a

practical algorithm for computing this function and its

derivatives. Recently, numerical implementations for the

calculation of the Green’s displacements and stresses, as

well as their derivatives have also been introduced by Tonon

et al., and a comparison study of the two algorithms [7,9] is

under investigation [9]. A limitation of both these studies is

that all the roots of the sixth degree polynomial are assumed

to be distinct which is not always the case. An explicit

solution in terms of the Stroh eigenvalues for the 3D

anisotropic elastic Green’s function is presented in [5]

where the solution remains valid for multiple roots. While

this solution is general, it appears to be lengthier than the

explicit expressions derived separately for the cases of

simple, double and triple poles that are presented in this

paper. Further, the development was limited to the Green’s

function only. In this work, analytical expressions for not

only the Green’s function but also its first-order derivatives,
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Fig. 1. A spherical coordinate system.
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in the presence of a multiple root, are discussed herein as

they are required by a standard BEA.

Although the algorithm proposed by Sales and Gray is

technically sound, it has been shown that numerical

problems arise when the sixth degree polynomial has

multiple roots. In this situation, or when the roots are nearly

equal, the Newton algorithm employed to calculate the root

can converge slowly. This issue has been partly addressed in

a short publication [10] where the capability to evaluate the

Green’s function (but not derivatives) in case of a multiple

pole was discussed. The evaluation of both the Green’s

function and its first-order derivatives, which is required in a

standard boundary integral analysis, is the subject of this

full-length paper. Explicit expressions based on the residue

calculus are fully derived for the cases of double and triple

roots. In addition, the present algorithm implements the

double subscript notation for the fourth-rank elastic constant

tensor Cjlkm, and consequently requires less memory storage

and is more computationally efficient than that in [7].

Numerical results for the Green’s function and its first-order

derivatives in the presence of both double and triple roots

are in excellent agreement with those obtained by means of

direct integration using the symbolic computation package

Maple.
2. Residue calculus approach to the Green’s function
2.1. Green’s function Ujk

Consider an unbounded anisotropic elastic body sub-

jected to a point load. Let Ujk(P,Q) be the Green’s function

corresponding to the displacement field in the xk direction,

at x, produced by the load in the xj direction at x0. The

function Ujk(x0,x) can be expressed as a line integral [11,12]

Ujkðx; x0Þ Z
1

8p2r
#
S1

KK1
jk ðxÞdsðxÞh

1

8p2r
�Ujk; (1)

where x0 is the source point, and x is the observation or field

point. Here, x2R3, Kjk is the Christoffel tensor defined in

terms of the elastic constants Cjlkm of the material [13]

Kjk Z Cjlkmxlxm; (2)

and rZkxKx0k. The integration path is the unit circle in the

plane having normal xKx0

S1 Z S1ðx; x0Þ Z fx2R3j kxk Z 1; x$ðx Kx0Þ Z 0g: (3)
2.2. General solution of the Green’s function Ujk

In a spherical coordinate system located at the source

point x0 (see Fig. 1), the contour integral in Eq. (1) may be
written as

�Ujkðq;jÞ Z

ð2p

0
KK1

jk ðxðt; q;jÞÞdt; (4)

where q and j are spherical angles defining the unit

direction vector (xKx0)/r (0%j%p denotes the polar angle

measured from the equator, and 0%j%2p the azimuthal

angle in the x1x2 plane from the x1 axis). The parametric

equation of the unit circle of the integration path is given by

xðt; q;jÞ Z

x1ðt; q;jÞ

x2ðt; q;jÞ

x3ðt; q;jÞ

8><
>:

9>=
>;

Z

sinðqÞcosðtÞCcosðqÞcosðjÞsinðtÞ

KcosðqÞcosðtÞCsinðqÞcosðjÞsinðtÞ

KsinðjÞsinðtÞ

8><
>:

9>=
>;: (5)

The integral in Eq. (4) can be evaluated using residue

calculus by transforming the integrand into a rational

function, the range of integration becoming the real axis.

One way to achieve this transformation is to use the change

of variable [14]:

Z Z tanðtÞ: (6)

With this transformation, the components of KK1
jk become

rational functions of Z, and Eq. (4) can be written in the

form [7]

�Ujkðq;jÞ Z 2

ðN

KN

PjkðZÞ

QðZÞ
dZ Z 4pis; (7)

where Pjk(Z) and Q(Z) are the fourth degree and sixth degree

polynomials of Z, respectively; and s is the sum of the

residues Res(ln) of Pjk(Z)/Q(Z) at the poles ln of Q(Z) which

lie in the upper half plane. From now on, Pjk(Z) and Q(Z)

should be understood as functions of not only Z, but also of q

and j, i.e. Pjk(Z)hPjk(Z,q,j) and Q(Z)hQ(Z,q,j).
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Note that [7] only considered Res(ln) for the case of a

simple pole, i.e. distinct roots (ljslk, jsk). In general,

Res(ln) can be determined from the expression [15]:
ResðlnÞ Z
1

ðm K1Þ!

dmK1

dZmK1
ðZ KlnÞ

m PjkðZÞ

QðZÞ

	 
� �
ZZln

:

(8)
†
 In case of a simple pole (mZ1)

�Ujkðq;jÞ Z 4pi
X3

nZ1

ResðlnÞ; (9)

where

ResðlnÞ Z ðZ KlnÞ
PjkðZÞ

QðZÞ

� �
ZZln

Z
PjkðZÞ

QðnÞðZÞ

� �
ZZln

Z
PjkðlnÞ

QðnÞðlnÞ
: (10)

In Eq. (10), the polynomials Pjk(ln) and Q(n)(ln) may be

written in the following forms:

PjkðlnÞ Z
X4

lZ0

pjkll
l
n; (11)

QðnÞðlnÞ Z q6ðln K �lnÞ
Y3

oZ1
osn

ðln KloÞðln K �loÞ; (12)

where pjkl is a coefficient associated with the lth-order

term in Eq. (11), and q6 is a coefficient associated with

the sixth-order term in Eq. (12).
†
 In case of a double pole (mZ2), for example, l1Zl2, one

gets

�Ujkðq;jÞ Z 4pi½ResðlnÞCResðl3Þ�; (13)

where n could either be 1 or 2, and (a subscript comma

implies partial differentiation with respect to the variable

following)

ResðlnÞ Z
d

dZ
ðZ KlnÞ

2 PjkðZÞ

QðZÞ

	 
� �
ZZln

Z
d

dZ

PjkðZÞ

Qðn2ÞðZÞ

	 
� �
ZZln

Z
1

Qðn2ÞðlnÞ
Pjk;ZðlnÞ

�

K
1

ln Kl3

C
2

ln K �ln

C
1

ln K �l3

� �
PjkðlnÞ

�
; ð14Þ
Pjk;ZðlnÞ Z
X3

lZ0

ðl C1ÞpjkðlC1Þl
l
n; (15)

Qðn2ÞðlnÞ Z q6ðln Kl3Þðln K �lnÞ
2ðln K �l3Þ; (16)

Resðl3Þ Z
Pjkðl3Þ

Qð3Þðl3Þ
: (17)
†
 In case of a triple pole (mZ3), we have l1Zl2Zl3, thus

�Ujkðq;jÞ Z 4piResðlnÞ; (18)

where n could either be 1, 2 or 3, and

ResðlnÞ Z
1

2

d2

dZ2
ðZ KlnÞ

3 PjkðZÞ

QðZÞ

	 
� �
ZZln

Z
1

2

d2

dZ2

PjkðZÞ

Qðn3ÞðZÞ

	 
� �
ZZln

Z
1

Qðn3ÞðlnÞ

Pjk;ZZðlnÞ

2
K

3Pjk;ZðlnÞ

ln K �ln

	

C
6PjkðlnÞ

ðln K �lnÞ
2



; ð19Þ

Pjk;ZZðlnÞ Z
X2

lZ0

ðl C1Þðl C2ÞpjkðlC2Þl
l
n; (20)

Qðn3ÞðlnÞ Z q6ðln K �lnÞ
3: (21)
3. Residue calculus approach for the first-order

derivatives of Ujk(x,x0)

According to Eqs. (1) and (4), the partial derivatives of

Ujk(x,x0) with respect to x or x0 can be expressed in terms of

those of �Ujkðq;jÞ with respect to angles q or j. In the

following, a represents either angle.
†
 In case of a simple pole (mZ1) in Q(Z)

�Ujk;aðq;jÞ Z 2

ðN

KN

Pjk;aðZÞQðZÞKPjkðZÞQ;aðZÞ

Q2ðZÞ
dZ

Z 4pi
X3

nZ1

ResðlnÞ: ð22Þ

As Q2(Z) has three double poles, use of Eq. (8) yields

ResðlnÞ Z
d

dZ

Pjk;aðZÞQðZÞKPjkðZÞQ;aðZÞ

Q2
ðnÞðZÞ

( )" #
ZZln

;

(23)
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where

QðnÞðZÞ Z q6ðZ K �lnÞ
Y3

oZ1
osn

ðZ KloÞðZ K �loÞ: (24)

Noting that Q(ln)Z0, the result is,

ResðlnÞ

Z
Pjk;aðlnÞQ;ZðlnÞKPjk;ZðlnÞQ;aðlnÞKPjkðlnÞQ;aZðlnÞ

Q2
ðnÞðlnÞ

C
2PjkðlnÞQ;aðlnÞQðnÞ;ZðlnÞ

Q3
ðnÞðlnÞ

: ð25Þ
†
 In case of a double pole (mZ2) in Q(Z), for example,

l1Zl2 (i.e. nZ1 or 2), one gets

�Ujk;aðq;jÞ Z 4pi½ResðlnÞCResðl3Þ�; (26)

where Res(l3) is determined by Eq. (23). As Q2(Z) has a

quadruple pole, Res(ln) is given by Eq. (8) as follows:

ResðlnÞZ
1

6

d3

dZ3

Pjk;aðZÞQðZÞKPjkðZÞQ;aðZÞ

Q2
ðn2Þ

ðZÞ

( )" #
ZZln

;

(27)

Qðn2ÞðZÞ Z q6ðZ Kl3ÞðZ�K �lnÞ
2ðZ K �l3Þ: (28)

More specifically, Eq. (27) is represented as

ResðlnÞZ
1

6Q2
ðn2Þ

ð3Pjk;aZZQ;Z C3Pjk;aZQ;ZZ CPjk;aQ;ZZZ

KPjk;ZZZQ;aK3Pjk;ZZQ;aZ K3Pjk;ZQ;aZZ

KPjkQ;aZZZÞK
1

Q3
ðn2Þ

½Qðn2Þ;Zð2Pjk;aZQ;Z

CPjk;aQ;ZZ KPjk;ZZQ;aK2Pjk;ZQ;aZ

KPjkQ;aZZÞCQðn2Þ;ZZðPjk;aQ;Z KPjk;ZQ;a

KPjkQ;aZÞCQðn2Þ;ZZZPjkQ;a=3�

C
3

Q4
ðn2Þ

½Q2
ðn2Þ;ZðPjk;aQ;Z KPjk;ZQ;aKPjkQ;aZÞ

KQðn2Þ;ZZQðn2Þ;ZPjkQ;a�C
4Q3

ðn2Þ;Z
PjkQ;a

Q5
ðn2Þ

; ð29Þ

where all the polynomials are evaluated at ZZln, i.e.

PjkZPjk(ln) and so on.
†
 In case of a triple pole in Q(Z) (mZ3), we have

�Ujk;aðq;jÞ Z 4piResðlnÞ; (30)

where

ResðlnÞZ
1

120

d5

dZ5

Pjk;aðZÞQðZÞKPjkðZÞQ;aðZÞ

Q2
ðn3Þ

ðZÞ

( )" #
ZZln

;

(31)
Qðn3ÞðZÞ Z q6ðZ K �lnÞ
3: (32)

The result is

ResðlnÞ Z
1

Q2
ðn3Þ

ð5Pjk;aZZZZQ;Z C10Pjk;aZZZQ;ZZ

C10Pjk;aZZQ;ZZZ C5Pjk;aZQ;ZZZZ

CPjk;aQ;ZZZZZ KPjk;ZZZZZQ;a K5Pjk;ZZZZQ;aZ

K10Pjk;ZZZQ;aZZ K10Pjk;ZZQ;aZZZ

K5Pjk;ZQ;aZZZZ KPjkQ;aZZZZZÞ

K
2

Q3
ðn3Þ

½5Qðn3Þ;Zð4Pjk;aZZZQ;Z C6Pjk;aZZQ;ZZ

C4Pjk;aQ;ZZZ CPjk;aQ;ZZZ KPjk;ZZZZQ;a

K4Pjk;ZZZQ;aZ K6Pjk;ZZQ;aZZ K4Pjk;ZQ;aZZZ

KPjkQ;aZZZZÞ

C10Qðn3Þ;ZZð3Pjk;aZZQ;Z C3Pjk;aZQ;ZZ

CPjk;aQ;ZZZ KPjk;ZZZQ;a K3Pjk;ZZQ;aZ

K3P;ZQ;aZZ KPjkQa;ZZZÞ

C10Qðn3Þ;ZZZð2Pjk;aZQ;Z CPjk;aQ;ZZ

KPjk;ZZQ;a K2Pjk;ZQ;aZ KPjkQaZZÞ

C5Qðn3Þ;ZZZZðPjk;aQ;Z KPjk;ZQ;a KPjkQ;aZÞ

KQðn3Þ;ZZZZZPjkQ;a�

C
30

Q4
ðn3Þ

½2Q2
ðn3Þ;Zð3Pjk;aZZQ;Z C3Pjk;aZQ;ZZ

CPjk;aQ;ZZZ KPjk;ZZZQ;a K3Pjk;ZZQ;aZ

K3Pjk;ZQ;aZZ KPjkQ;aZZZÞ

C6Qðn3Þ;ZZQðn3Þ;Zð2Pjk;aZQ;Z CPjk;aQ;ZZ

KPjk;ZZQ;a K2Pjk;ZQ;aZ KPjkQ;aZZÞ

C ð3Q2
ðn3Þ;ZZ C4Qðn3Þ;ZZZQðn3Þ;ZÞðPjk;aQ;Z

KPjk;ZQ;a KPjkQ;aZÞ

KPjkQ;að2Qðn3Þ;ZZZQðn3Þ;ZZ CQðn3Þ;ZZZZQðn3Þ;ZÞ�

K
120

Q5
ðn3Þ

½2Q3
ðn3Þ;Zð2Pjk;aZQ;Z CPjk;aQ;ZZ

KPjk;ZZQ;a K2Pjk;ZQ;aZ KPjkQ;aZZÞ

C6Qðn3Þ;ZZQ2
ðn3Þ;ZðPjk;aQ;Z KPjk;ZQ;a

KPjkQ;aZÞK ð2Qðn3Þ;ZZZQ2
ðn3Þ;Z

C3Q2
ðn3Þ;ZZQðn3Þ;ZÞPjkQ;a�

C
600

Q6
ðn3Þ

½Q4
ðn3Þ;ZðPjk;aQ;Z KPjk;ZQ;a KPjkQ;aZÞ

K2Qðn3Þ;ZZQ3
ðn3Þ;ZPjkQ;a�

C
720Q5

ðn3Þ;Z
PjkQ;a

Q7
ðn3Þ

:

ð33Þ
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4. Numerical implementation and computation time

As in Ref. [7], the three roots ln are found using

Newton’s method in conjunction with Horner’s algorithm

[16] for efficient polynomial evaluation.

Once the roots have been found, the quantities jl1Kl2j,

jl2Kl3j and jl3Kl1j are compared with 3Z10K4 to

determine whether a multiple root occurs. Then depending

on the order m of the roots, appropriate equations among (9),

(13) and (18) need be selected to compute the tensor

elements of �Ujk.

It is well known that the description of both elastic strain

and stress tensors involve only six independent components,

conveniently identified using a double subscript notation.

As these quantities, as well as Kjk in Eq. (2), are symmetric

with respect to an interchange of the subscripts, it will be

convenient to abbreviate each double subscript notation uv

in Kjk ZCðjlÞðkmÞ
�xlm ð �xlm ZxlxmÞ to a single subscript (Voight

notation) running from 1 to 6; i.e. uvZ11, 22, 33, 23/32,

31/13, 12/21. Due to these symmetries, the fourth-order

elastic constant tensor Cjlkm can be replaced by 21

independent components cij of a (6!6) symmetric matrix

as widely employed in the literature. As a result, the six

independent components of the tensor Kjk are simply

given by

K11

K22

K33

K23

K31

K12

8>>>>>>>>>>>><
>>>>>>>>>>>>:

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

Z

c11 c66 c55 2c56 2c15 2c16

c66 c22 c44 2c24 2c46 2c26

c55 c44 c33 2c34 2c35 2c45

c56 c24 c34 ðc23 Cc44Þ ðc36 Cc45Þ ðc25 Cc46Þ

c15 c46 c35 ðc35 Cc45Þ ðc13 Cc55Þ ðc14 Cc56Þ

c16 c26 c45 ðc25 Cc46Þ ðc14 Cc56Þ ðc12 Cc66Þ

2
6666666666664

3
7777777777775

!

x1x1

x2x2

x3x3

x2x3

x3x1

x1x2

8>>>>>>>>>>>><
>>>>>>>>>>>>:

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

; ð34Þ

The use of single subscript notation eliminates the

unnecessary storage for symmetric components in the elastic

constant tensor Cjlkm and the Green’s function Ujk: the

handling of a (3!3!3!3) fourth-rank tensor Cjlkm, and

(3!3) matrices Kjk and Pjk has been replaced by a (6!6)

matrix and (6!1) vectors as shown in Eq. (34). However, the

main consequence is computational efficiency. The compu-

tation times resulting from this numerical implementation are

even be better than those reported in Ref. [7].
5. Numerical examples

5.1. Simple roots

To start, �Ujk is evaluated in case of distinct roots (simple

poles) in the polynomial Q(Z) using the numerical

implementation proposed above. The materials germanium

(Ge) and tin (Sn), which, respectively, are cubic and

tetragonal crystal systems, are employed. The elastic

constants for germanium are (in units of 1010 Pa) [17]

c11Z12.85, c12Z4.83 and c44Z6.68. Tin has a piezo-elasto-

dielectric matrix type defined by the following six elastic

constants (in the same units) [17]: c11Z7.35, c33Z8.7,

c44Z2.2, c66Z2.265, c12Z2.34 and c13Z2.8.

Residue calculus results for �Ujk;aðq;jÞ are compared

with those obtained via direct integration of Eq. (7) using

the symbolic computation package Maple. The discrepan-

cies of �U22;qðq;p=2Þ and �U13;jðq;p=2Þ for germanium, and
�U12;qðp;jÞ and �U33;jðp;jÞ for tin are shown in Figs. 2–5,

respectively. Excellent agreements can be observed con-

sidering that the elastic constants cij are typically only

known to three significant digits.
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Table 1

Evaluation of �Ujk;aðp=2; 0Þ in case of a double pole

Residue calculus Maple solution % Discrepancy

�Ujk;qðp=2; 0Þ K9.222024040 K9.222024152 1.214!10K6

�Ujk;jðp=2; 0Þ K2.787466587 K2.787466638 1.830!10K6
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5.2. Multiple roots

In this section, the evaluation of �Ujk;aðq;jÞ in case of

multiple roots in the polynomial Q(Z) is carried out to

validate the numerical implementation of Eqs. (13) and (18).

For these tests, it is convenient to prescribe Pjk(Z) and Q(Z) as

functions of the angles q and j, rather than use a particular

material. The gradients �Ujk;qðp=2; 0Þ and �Ujk;jðp=2; 0Þ

are evaluated using residue calculus and are compared with

those obtained from the direct integration of the following

equation using the package Maple:

�Ukj;a Z 2

ðN

KN

d

da

PjkðZÞ

QðZÞ

	 

dZ: (35)
†
 Double pole: Consider the following polynomials:

PjkðZÞ Z½40 KcosðqÞ�Z4 C2 cosðqÞZ3 K ½5 CsinðjÞ�Z2

K10 sinðjÞZ C25; ð36Þ
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Fig. 5. Discrepancy of �U33;jðp;jÞ for tin.

Tab

Eva

�Ujk

�Ujk
and

QðZÞ Z3 sinðqÞcosðjÞZ6 C18Z5 C93½1 KcosðqÞ�Z4

C180Z3 C513½1 CsinðjÞ�Z2 C546Z

C2535 sinðqÞ: ð37Þ

This is the case of a double pole since at qZp/2 and

jZ0

QðZÞZ3Z6 C18Z5 C93Z4 C180Z3 C513Z2 C546Z

C2535 Z3ðZ Kl1ÞðZ Kl2Þ
2ðZ K �l1ÞðZ K �l2Þ

2;

ð38Þ

where l1Z1C2i, and l2Zl3 ZK2C3i.The results

obtained from residue calculus and from using the

symbolic package Maple are shown in Table 1 along

with the percentage discrepancies. The data suggest that

the residue calculus implementation for double-pole

cases is very accurate.
†
 Triple pole: Now, consider the following pair:

PjkðZÞ Z sinðjÞZ4 Ksin2 q

2

� �
Z3

K ½1 KcosðqÞ�Z2 CcosðjÞZ C1 (39)

and

QðZÞ Z 2 sinðqÞcosðjÞZ6 K36 cosð2qÞZ5

C276Z4 C1152Z3 C2760½1 Ksinð2qÞ�Z2

C3600Z C2000½1 CsinðjÞ�: ð40Þ

At qZp/2 and jZ0, Q(Z) has a triple pole since it can be

written as

QðZÞ Z 2Z6 C36Z5 C276Z4 C1152Z3

C2760Z2 C3600Z C2000

Z 2ðZ Kl1Þ
3ðZ K �l1Þ

3; (41)

where l1Zl2 Zl3 ZK3C i.
le 2

luation of �Ujk;aðp=2; 0Þ in case of a triple pole

Residue calculus Maple solution % Discrepancy

;qðp=2; 0Þ K65972.66056 K65972.66046 1.516!10K7

;jðp=2; 0Þ K2115.666303 K2115.666308 2.363!10K7
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Again, the residue calculus results are compared with those

obtained using the package Maple as shown in (Table 2),

and it is seen that they can be considered as identical.
6. Conclusion

Explicit expressions based upon the residue calculus for

the 3D anisotropic elastic Green’s function and its first-

order derivatives are obtained for the case of a multiple pole.

A new numerical scheme is proposed which improves the

computational effectiveness of the algorithm initially

proposed by Sales and Gray [7] through the use of double

subscript notation in expressing the fourth-order elastic

constant tensor. Numerical results for the Green’s function

and its first-order derivatives in the presence of both single

and multiple roots are in excellent agreement with those

obtained using the symbolic computation package Maple.

A numerical implementation of the residue calculus for the

calculation of the second derivatives of the 3D anisotropic

elastic Green’s function in the presence of a multiple root is

currently being pursued by the authors as these derivatives

are required in a BEA based upon the hypersingular

(traction/stress) boundary integral equation, such as a dual

BEA [18] or a symmetric Galerkin BEA [19].
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