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Abstract: Large data sets cross-classi�ed according to multiple factors are available in epidemiology
and other disciplines. Their analysis often calls for �nding a small set of best hierarchical models
to serve as a basis for further analysis. This selection can be based on some well de�ned model
optimality criterion. Fitting all possible models to �nd a best set is usually not feasible for as
few as �ve factors (7581 possible models). We note that the set of hierarchical models and their
relationships can be represented by a graph and develop an algorithm to generate it e�ciently. We
further develop a graph traversal algorithm that requires �tting of only a fraction of all models to
�nd exactly a best subset of the models. The algorithm classi�es as many models as possible on
the basis of each �t. A data structure implementing the graph of model nodes keeps track of the
information required by the model search algorithm.

Keywords: Information criterion, Bayes criterion, Model optimality, Partial ordering, Cover graph,

Spanning tree, Depth �rst search, Branch and bound.

1. Introduction

In epidemiology, cause-speci�c mortality data are often cross-classi�ed according to

the levels of several risk factors. Hierarchical log-linear models are used to evaluate the
potential association between the risk factors and the mortality rates. In exploratory

studies, an important objective is to �nd all of the models that adequately describe

the data. One approach to this problem that can be used for small tables (up to three

or four factors) is to �t all possible hierarchical models and then use an information

type statistic, such as Akaike or Bayes (see [1] and [14]), to select those models that
provide a good summary of the data. For higher dimensional tables this approach

becomes di�cult because of computational complexity. With 4, 5, and 6 factors,

the number of possible models is 168, 7,581, and 7,828,354, respectively. Typically,
models with high order interactions are di�cult to interpret. However, even when we
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consider only models of order two or less, 5 and 6 factors produce 1,451 and 40,070

models, respectively. The computational complexity lies not only in generating and
managing these models, but also in �tting them. As the number of factors increases,

the number of possible models grows faster than exponentially and the e�ort in �tting

a single model grows exponentially.

Many model selection procedures select a single model through a series of sig-
ni�cance tests on individual or groups of parameters. An overview of several such

procedures is given byWrigley [15]. The selected model will often di�er between these
procedures even if a common test size is used. This is because, in general, individual

parameters are not orthogonal so that marginal e�ects are not additive.

Optimization approaches with a well de�ned model optimality criterion are more

consistent because the criterion ranks models the same way regardless of the method
of search. We emphasize that a search procedure does not select models. It merely

�nds models already selected by an optimality criterion. As is the case for most
optimization problems, some search methods guarantee to �nd the optimum while

others use a heuristic to obtain something \close" to the optimum. These approaches

are typically more computationally intensive than those relying on signi�cance tests
of parameters.

Model search procedures that take the optimization approach have been devel-
oped for regression models (for example, see [8], [12]) where all possible subsets of the
regressor variables are considered. These algorithms are based on the fundamental

inequality RSS(A) � RSS(B), where RSS is the residual sum of squares and model
B is contained in model A. In [8] and [12], models are �rst partitioned according
to number of model terms and then best �tting models are found for each partition.
Edwards and Havranek [4] have developed a fast procedure for model search in hier-
archical models based on one optimality criterion. The procedure is approximate in

the sense that it does not guarantee to �nd all models that belong in the best subset.

We use the same fundamental inequality as [8] and [12], but our optimality cri-

terion is any of a class of functions of both model size and goodness of �t. That is,

we select a single set of models that are best with respect to one of a broad class of
optimality criteria. Our best set is exact in the sense that any model in the best set

is better than any model not in the best set. Also, our models consist only of hierar-

chical combinations of variables. Under this restriction, the selected set of models is

invariant to location and scale transformations of the variables [13].

Motivation for the development of our procedure came from epidemiology; there-

fore, some of its description and implementation is for log-linear models. The proce-
dure, however, is applicable to most other situations that require �nding a best set

of hierarchical models from some larger set of hierarchical models.

The basis for our model search algorithm is a graph representation of the relation-

ships between a set of hierarchical models. This representation and its implementa-
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tion are developed in the next section. The model search algorithm is described in

section 3 and its performance is discussed in section 4.

2. Graph representation of a set of hierarchical models

A hierarchical model can be represented by its generating class (for example, see [4]).
The generating class is the set of maximal terms not set to zero. For example, the

model

� + a+ b+ c+ ab+ ac

is represented by [ab; ac], and the model

�+ a+ b+ c+ ac

is represented by [ac; b]. The representation simply omits every term that is contained

in another term. We will call this the maximal representation. This representation
is also useful in iterative proportional �tting of a log-linear model since the maximal
terms specify the table margins that are involved in the iterations. The maximal

terms also de�ne the smallest tables required to represent the �tted values.

An alternative representation, also discussed in [4], is to use the minimal terms
that are set to zero. This is called the dual representation. Assuming three fac-
tors, dual representations for the two models above are given by [bc]d and [ab; bc]d,

respectively.
Both representations are useful in generating other models from a given model.

The maximal representation shows exactly the terms that should be set to zero to
obtain hierarchical models that are smaller by one term. Analogously, the dual repre-
sentation shows exactly the terms that should be added to obtain hierarchical models

that are larger by one term. Consider a three factor example. The model [ab; ac] has
only one model that is larger by one term, namely [ab; ac; bc], and has two models

that are smaller by one term, namely [ab; c] and [ac; b]. Thus we remove ab or ac to

obtain the smaller models and we add bc to obtain the larger model. This is exactly
what the maximal representation [ab; ac] and the dual representation [bc]d indicate.

Given k factors there are 2k possible model terms (all subsets of k), but not all
model term combinations form hierarchical models. Let Hk denote the set of all

possible hierarchical models for k factors including both the minimal model and the

null model. Crude bounds on the number of models in this set are given by

2k <j Hk j< 22
k

; for k > 0:

Since a model is a set of model terms, the subset relation � imposes a partial

ordering on the set of all possible hierarchical models. A partial ordering can be
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[abc]

[ab,ac,bc]

[ac,bc] [ab,bc] [ab,ac]

[a,bc] [ac,b] [ab,c]

[bc] [a,b,c] [ac] [ab]

[b,c] [a,c] [a,b]

[c] [b] [a]

[1]

[]

Figure 1: 3. Cover graph induced by the subset relation on H3, the set of all

hierarchical models for three factors.

represented by a directed graph. A graph consists of a set of nodes and a set of
edges. Two nodes are considered neighbors if there exists an edge between them. In
a directed graph, edges have direction. A precise de�nition of a graph and many
algorithms applicable to graphs can be found in a number of books on design of

computer algorithms. See for example, [9] or [10].
The smallest directed graph that represents a partial ordering (containing the

least number of edges) is called a cover graph of the partial ordering. Let the cover
graph induced by � on Hk be denoted by k. This cover graph consists of one node
for each model in Hk and an edge between any two models that di�er by exactly one

term. The term by which two neighboring models di�er is associated with the edge
that connects them and the edge is directed towards the smaller model. Examples

of 3 and 4 are shown in Fig. 1 and Fig. 2, respectively. Models are shown in

their maximal representation and each edge emanates from the term that is being
deleted to form the smaller model. Note that the dual representation of a model is

obtained by collecting the terms deleted on all incoming edges. For example, the dual
representation of [a; b; c] is [ab; ac; bc]d. Also note that 3 is a subgraph of 4 and

that in general i is a subgraph of j for i < j.

The graph representation k of a set of hierarchical models clearly divides the

models into levels; edges exist only between models in adjacent levels. Any two
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Figure 2: 4, cover graph induced by the subset relation on the set of all hierarchical

models for four factors.
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adjacent levels thus form a bipartite graph. Each level represents a set of hierarchical

models that have a given number of model terms. Since 2k is the number of possible
model terms from k factors and we include both the minimal model and the null

model, k has 2k + 1 levels.

Because k is a cover graph of a partial ordering induced by the subset relation, it
has some interesting properties. eeping in mind that a model is a set of terms, the

intersection model of two models is given by a model that is on the highest possible
level and is reachable from the two models. Similarly, the union of two models is

given by a model that is on the lowest possible level from which both models can be

reached. Some examples in Fig. 1 are: [ab] \ [a; bc] = [a; b], [ab] [ [a; bc] = [ab; bc],
[ab; ac]\ [ac; bc] = [ac; b], and [ab; ac][ [ac; bc] = [ab; ac; bc].

Generation of k or a subgraph of k on a computer is accomplished in either a
top-down or a bottom-up fashion. We start with a single model and generate either
all its submodels or all models that are larger and have a given number of factors.
Each level is constructed by either deleting or adding single terms in each model on

the previous level, as guided by the maximal or dual representations, respectively.

The union and intersection properties are used to establish all edges of a new model
node to previously generated model nodes. This allows us to proceed in any order
within a level and ensures that no duplicate models are generated.

We give the top-down algorithm and note that the bottom-up algorithm is ob-

tained simply by interchanging union with intersection and maximal with dual. The
algorithm in Fig. 3 describes the construction of one level given the previous level

L. This construction involves the creation of nodes of the next level as well as the

creation of all edges pointing to those nodes. In this algorithm, A is a node of the
graph, and [A] and [A]d are the maximal and dual representations of the model at
node A. A node A has an edge associated with each term in [A] pointing towards
the smaller model created by deleting that term. The edge associated with term t is

denoted by
t
�! and the underlying data structure is assumed to allow traversal of

edges in both directions.

No duplicate models are created by this algorithm, because each new model is

immediately connected (in the innermost or loop) to all larger models that can

potentially generate it. Note that S
u
 � S [

t
�! uses established edges and

requires the level above level L, which contains the node with model [S][ [ ]. When
we start with a single model on the top level, such connections are needed only after

completing the next level.

Also note that the order for selection of nodes and terms in all or statements

is not speci�ed, because any order will work. However, we have found that if dictio-

nary order is used for terms in constructing smaller models (second or statement),

then the connections to existing models (third or statement) order the edges in re-
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or each node S on level L f

or each term t in [S] that does not have an edge f
Create with no edges and let [ ] = [S]� t.

or each term u in [ ]d f
Let [ ] = [ ] + u.

Find using established edges S
u
 � S [

t
�! .

Create edge associated with u of .

oint the edge to (i.e. establish
u
 � connection).

g

g

g

Figure 3: Algorithm for constructing the next lower level from level L.

verse dictionary order. That is, dictionary order for terms in maximal representation

induces reverse dictionary order for terms in dual representation. For example, dic-
tionary order for terms from three factors is a, ab, abc, ac, b, bc, c. ictionary order
also brings out symmetries in the graph.

To generate k we start with the saturated k-factor model and generate all its

submodels. Starting with a smaller model generates a subgraph of k. For example,

starting with the model [a; b; c] in Fig. 1 generates the subgraph of 3 that contains
only main e�ect models. A more interesting example is a subgraph of 5 containing
only models with up to order two interactions. This is generated from the all two-
way interactions model [ab; ac; ad; ae; bc; bd; be; cd; ce; de] and contains 1451 models

(nodes) and 6776 edges (too many to display in a �gure). It illustrates the quick
growth in complexity as the number of factors increases to �ve.

The data structure for the graph representation is of a standard variety typically

used for graphs. Two adjacency lists are maintained for each node, giving larger and

smaller neighbors that correspond to terms of the dual and maximal representations,

respectively. This allows edge traversal in both directions. Models are represented as

sets of model terms with a single bit indicating the presence or absence of a model
term. Similarly, a model term is a set of factors and the presence or absence of a

factor is also indicated by a single bit. For example, the model term abd is represented

by binary 01011 or by decimal 11. Its presence in a model is indicated by bit eleven

of a model representation. Thus for k factors we require 2k bits to represent a model.
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3. odel search

To obtain an exact procedure for �nding a best subset of models that avoids �tting all
models, we require an optimality criterion that allows a bounding mechanism. Atkin-

son [1] discusses two groups of criteria. He shows that criteria based on information

theory and Bayesian criteria all have the same general form. Model A is best if

� A +
�

2
pA

is minimum. Here A is the log likelihood for model A maximized over its pA pa-

rameters and the coe�cient � may be a constant or a function of the number of
observations. We can rewrite this in terms of deviance, A = �2( A � 0), where

0 is the log likelihood of the saturated model maximized over its parameters. It is

equivalent to say that model A is best if

A + �pA

is minimum.

To obtain a bounding mechanism, we use the fundamental inequality that A �

B whenever model B is contained in model A. Suppose we �t model A and obtain
its deviance, A. Then

B + �pB A + �pB: (1)

Conversely, if we �t model B, then

A + �pA � B + �pA: (2)

Thus, by �tting one model we obtain lower bounds on the optimality criterion of

smaller models and upper bounds on larger models. This enables us to accept some
larger models or reject some smaller models without �tting.

Let c denote our optimality criterion. Because we only use the monotonicity

property of a criterion in constructing the bounds (1) and (2), our procedure can
admit a more general form of an optimality criterion

c = c( ; p) (3)

that is monotone non-decreasing in for a �xed p. The monotonicity property gives

us inequalities analogous to (1) and (2). For model B contained in model A, �tting
A gives

c( B; pB) c( A; pB) (4)

and �tting B gives

c( A; pA) � c( B; pA): (5)
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We further require that should be by far the most di�cult part of c(�; �) to compute

in order to realize any savings in bounding models instead of �tting models. Of
course, we also require that the criterion be reasonable so that the resultant ordering

of models is useful.

The criteria described by Atkinson [1] are given by

c( ; p) = + �p:

As an example of a di�erent criterion that �ts the form (3), consider the procedure
of Edwards and Havranek [4] that �nds most (and possibly all) ini al acceptable

models. A model is acceptable if it is not rejected by a goodness-of-�t test at some

nominal level of signi�cance, and it is ini al acceptable if it does not contain any
other acceptable model. To select similar models, we can de�ne an optimality criterion
that orders all acceptable models by their number of parameters followed by all models
that are not acceptable. We assume that the goodness-of-�t test is a monotone

function of . This ordering is obtained with

c( ; p) = p + (p0 � p)I[rejected]

where [rejected] is 1 if the model is rejected by a goodness-of-�t test and is 0 otherwise,

and p0 is the number of parameters in the saturated model.
Given a criterion c and a criterion threshold c0, our model search procedure �ts

a sequence of models and on the basis of each �t it classi�es other models as in the

best set (c � c0), not in the best set (c > c0), and undeter ined (don't know if c � c0
or c > c0) by using inequalities (5) and (4). Each classi�cation employs a depth-�rst

search in a spanning tree of the graph (for example, see [10]). Such a search is e�cient

because a branch and bound approach can be employed in a tree. Whenever a node
is classi�ed as undeter ined, the rest of that branch in the spanning tree is bounded.

k for k > 3 has considerably less depth (number of levels) than breadth, so that

depth-�rst search is more storage e�cient than breadth-�rst search. We proceed to
�t and classify models until no undeter ined models remain. The choice of models to

�t is crucial in determining the total number of �ts required to complete this process.
The simplest automatic procedure for choosing models to �t starts at the largest

model and tries to eliminate as many models as possible on the basis of model pa-

rameters alone (since deviance is bounded by zero below). Next, the procedure goes

down through each level �tting any models that are still undeter ined. For each

model that is �t it attempts to eliminate more models using the lower bound (5).

With this simple strategy only some models that are not in the best set will require
�tting, however all models that are in the best set will require �tting. This is not

unreasonable since the subset of interest is typically small.

A simple way to set the c0 threshold for a given optimality criterion is to take the

smallest criterion value of the minimal, the main e�ects, and all two-way interaction
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models. This results in relatively small subsets for data that do not have strong high

order interactions. If a given threshold produces a best set that is either too large or
too small, c0 can be changed. In this case all models are reset to undeter ined status

and models that are already �t are reused in the classi�cation process. Further �tting

may be required to classify remaining undeter ined models. If the above automatic
procedure is used to choose models to �t, it is better to start with c0 that is too low

rather than too high, because all models in the best set are �t.

. iscussion

Our implementation of the search procedure, including the graph representation data
structure, is written in the C programming language with an interface to windows.

With this implementation we are able to conveniently control the model search pro-

cess both by choosing individual models to �t and using the automatic top-down
procedure. This tool is available by electronic mail from Statlib by sending send

h odel ro general as the body of the message to statlib te per.stat.c u.edu. Be-
cause of our interest in categorical data, our implementation is currently limited to
iterative proportional �tting of log-linear models.

Since we describe a model search procedure that �nds models selected by an
optimality criterion, we report on performance of the search process rather than

describing the models selected. We do not advocate the use of one optimality criterion
over another and merely state that a wide range of criteria can be used with our
procedure. The reader is refered to several good articles discussing the merits of
various optimality criteria ([1], [14], [5], and [11]).

We examine two data sets with our model search procedure. The �rst is a data
set on mortality among a cohort of World War II nuclear industry workers that is
reported in Frome et al. [7]. The second is a data set from yke and atterson [3]

on knowledge of cancer that is also reported in [6]. erformance is reported for the
automatic top-down procedure as the number of model �ts required to �nd all models

better than a criterion threshold.

It would be interesting to know the minimum number of �ts required for a given

data set and a criterion threshold. This would �rst require �tting all models and for

each model �nding which other models it classi�es as in the best set or not in the

best set. Since each �t has a set of models that it classi�es and we wish to classify

all models, the minimum number of �ts problem reduces to the ini u set cover

problem. Unfortunately the ini u set cover problem is N -hard (see [10]). Thus,
it is not feasible to solve this problem for a large number of models. Instead we

perform a few repetitions of the model search with di�erent choices of models �t. We

base these choices on the results of previous repetitions in an attempt to reduce the

number of models �t and report the repetition with least �ts. The intent is simply to
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show that the automatic top-down procedure can be improved rather than to make

any statement about the minimum �ts required.

Two tables are constructed from the mortality data [7]. One with four factors at

2, 3, 2, and 4 levels giving 48 cells. And the other with �ve factors at 2, 3, 2, 3, and

4 levels giving 144 cells. Frome et al. [7] used a model screening procedure developed

by Brown [2] to evaluate the importance of each of the factors and to investigate
the possibility of interactions. We have found that + 2p (the Akaike Information

Criterion) selects models that are implied by interactions reported in [7]. Therefore,
we report the search performance for + 2p.

The simple top-down automatic procedure with a threshold given by the main

e�ects model selects four models that are better out of the possible 168 by �tting

only 37 models. We also found that it is possible to choose the models to �t so that
only 29 are required to �nd the best �ve.

H5, the set of all possible models for the larger table, contains 7,581 models. The

main e�ects model criterion value is again used as the threshold. It turns out that
there is only one model that is better. The top-down automatic procedure �nds the

two best models after �tting 533 models. Our best choice of models to �t (found in
a few repetitions of the search) needed 349 �ts.

If we start with only models of order two or less (no 3-way and higher interactions),
there are 1,451 possible models and they contain the two best models found above.

The top-down automatic procedure required 160 �ts. By more deliberate choice of
models to �t we found that this can be reduced to 105 �ts.

The yke and atterson [3] data set has �ve factors each at two levels. We have

found that the criterion +2p ranked models with several interactions of order three
as better than the models selected by Fienberg [6], but the criterion + log(n)p (the

Bayes Information Criterion) put these models among the �ve best. We report the

search performance for the latter criterion. Our threshold is the criterion value for
the all two-way interaction model.

This data set presented a special problem for the automatic top-down procedure.

Because all of the �ve factors have exactly two levels, each model has as many pa-

rameters as it has terms. This means that all models on level i of 5 have exactly
i parameters. The automatic procedure �rst eliminates models on the basis of their

parameters, so it eliminates a number of the top levels leaving no models eliminated

on the levels below. Thus all models on the next level will be �t. For this reason, the

automatic procedure required 769 �ts to �nd the 81 models (out of 7,581 possible)

that are better than the all two-way interaction model. By more careful selection
of models to �t, we were able to reduce this to 383 �ts. If we reduce the criterion

threshold so that only �ve models are selected, they can be found after only 164 �ts.

This is, of course, possible only after we know the criterion value for the best models,

but it illustrates that fewer �ts are required when the best subset is small.
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We conclude that even the automatic top-down strategy requires the �tting of only

a fraction of all models to determine exactly a small set of the best models. On our
test data sets, this fraction decreases as the number of models under consideration

increases. On the other hand, the automatic strategy is not optimal and can be

considerably improved by more careful selection of models to �t.

We are investigating other strategies for choosing models to be �t. Better strate-

gies seem to involve �tting some key models which are related to unions of models so
far not classi�ed. We are also investigating the use of parallel processing to extend
the model search process to larger data sets and more complex models.
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