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PARALLELIZING THE SPECTRAL TRANSFORM METHOD. PART 11

DAVID W. WALKER”*, PATRICK H. WORLEY* AND JOHN B. DRAKE”

Abstract. The spectral transform method is a widely-used numerical technique for solving partial
differential equations on the sphere in global climate modeling. This paper describes the parallelization
and performance of the spectral method for solving the nonlinear shallow water equations on the
surface of a sphere using a 128-node Intel iPSC/860 hypercube. Solving the shallow water equations
represents a computational kernel of more complex climate models. This work is part of a research
program to develop climate models that are capable of much longer simulations at a significantly
finer resolution than current models. Such models are important in understanding the effects of the
increasing atmospheric concentrations of greenhouse gases, and the computational requirements are so
large that massively parallel multiprocessors will be necessary to run climate models simulations in a
reasonable amount of time.

The spectral method involves the transformation of data between the physical, Fourier, and spectral
domains. Each of these domains is two-dimensional. The spectral method performs Fourier transforms
in the longitude direction followed by summation in the latitude direction to evaluate the discrete
spectral transform. A simple way of parallelizing the spectral code is to decompose the physical
problem domain in just the latitude direction. This allows an optimized sequential FFT algorithm
to be used in the longitude direction. However, this approach limits the number of processors that
can be brought to bear on the problem. Decomposing the problem over both directions allows the
parallelism inherent in the problem to be exploited more effectively — the grain size is reduced, so that
more processors can be used.

Results are presented that show that decomposing over both directions does result in a more
rapid solution of the problem. The results show that for a given problem and number of processors,
the optimum decomposition has approximately equal numbers of processors in each direction. Load
imbalance also has an impact on the performance of the method. The importance of minimizing
communication latency and overlapping communication with calculation is stressed. General methods
for doing this, that may be applied to many other problems, are discussed.

Key words. hypercube multiprocessors, parallel Fourier transform, parallel Legendre transform,
parallel spectral transform method shallow water equations,
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1. Introduction. In order to understand the effects of the increasing atmospheric
concentrations of greenhouse gases, climate models are needed that are capable of much
longer and more numerous simulations at a significantly finer resolution than are cur-
rently available. Developing such an advanced climate model will require advances in
hardware, numerical algorithms, and model physics. In particular, it is clear that mas-
sively parallel multiprocessors will be necessary to run such simulations in a reasonable
amount of time. As part of this research effort, we are investigating whether current
numerical techniques are suitable for use in an advanced climate model.

The spectral transform method [5] is a widely-used numerical technique for solving
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partial differential equations on the sphere in global climate modeling (see, for example,
[1]). For example, it is used in CCM1 [10] (the Community Climate Model 1), and its
successor CCM2. There are both numerical and algorithmic issues to be considered
before using the spectral transform method for climate models with much finer resolu-
tions. In the work described here, we restrict ourselves to investigating how efficiently
the spectral transform method can be parallelized on distributed memory multipro-
cessors, and how this performance is likely to scale as both the problem size and the
number of processors increase.

In this paper, which follows on from the preliminary work described in [11], re-
sults are presented for a parallel FORTRAN program that uses the spectral transform
method to solve the nonlinear shallow water equations on the sphere. These results
show that an efficient implementation is possible on a 128-node Intel iPSC/860 hy-
percube, and that the high-resolution cases of interest are expected to run efficiently
on larger, more powerful, distributed memory machines, such as the Intel Delta and
Sigma multiprocessors. The results also highlight the need for specialized programming
techniques on machines for which computation is fast compared with the asymptotic
communication speed and message latency. Except for embarassingly parallel problems,
such machines can be exploited efficiently only if steps are taken to reduce and/or mask
the effects of communication overhead. In this work we use large granularity pipelining
and task interleaving to reduce the impact of communication overhead to an acceptably
low level. These techniques, discussed in more detail in Section 5.4, are applicable to a
large class of scientific and engineering problems.

2. The Problem. The shallow water equations constitute a simplified weather
prediction model that has been used to investigate numerical methods, and benchmark
a number of machines. The sequential code, SSWMSB, from which the parallel version
described in this work was derived, was originally written by Dr. J. J. Hack at NCAR.
This particular code is a good approximation to a computational kernel of CCM2,
which is currently being developed at the National Center for Atmospheric Research
(NCAR). We are currently developing a parallel version of CCM2 that will run on
the Intel iPSC/860 and similar multiprocessors, and will present our initial results in
parallelizing CCM2 in a subsequent paper.

The SSWMSB code uses the spectral transform method to solve the shallow water
equations on the surface of a sphere. In each timestep the state variables of the prob-
lem are transformed between the physical domain, where most of the physical forces
are calculated, and the spectral domain, where the terms of the differential equation
are evaluated. A more complete description of the method is given in [11]. The spec-
tral representation of a state variable, £, on the surface of a sphere is defined by an
approximation to the variable by a truncated series of spherical harmonic functions,

M N(m)
(1) Q)= D D ErP(p)e™

m=—M n=|m|

where g = sinf, 6 is latitude, A is longitude, and P7*(x) is the associated Legendre
function. In the physical domain, state variables are approximated on an [ x.J longitude-
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latitude grid. Exact, unaliased transforms of quadratic terms are obtained if M is chosen
to satisfy J > (3M +1)/2, and if I = 2J, and N(m) = M. In this work we use a fast
Fourier transform (FFT) algorithm that requires I to be a power of 2, and M is chosen
to be the minimum value satisfying the preceding conditions. Thus, the value of M
characterizes the grid resolution, and the term “TM” is used to denote a particular
discretization. For example, the T85 case has M =85, J = 128, and [ = 256.

Transforming from physical coordinates to spectral coordinates involves performing
an FFT for each line of constant latitude, followed by integration over latitude using
Gaussian quadrature to obtain the spectral coefficients,

J-1
(2) & =2 & () P ()

=0
where ™ is the mth Fourier coefficient, and w; is the Gaussian quadrature weight
corresponding to latitude y;. In the parallel implementation, the fast Fourier transform
and the integration over latitude, that together give the spectral transform, define the
problem. All other calculations, such as advancing the spectral coefficients by one time
step, and optionally filtering the solution to improve stability, are perfectly parallel,
requiring no interprocessor communication.

3. Data Distribution. In general, a one-dimensional array of data can be dis-
tributed (or decomposed) among a set of processors by first arranging the data into
non-intersecting subsets, and then uniquely assigning one subset to each processor. In
many cases, the decomposition of arrays over more than one dimension can be expressed
as the Cartesian product of one-dimensional decompositions over each array dimension.

The indices of a one-dimensional array of N items can be partitioned into N,
subsets, J;, as follows,

(3) T={j:j€2% & lkninli) <I(j) < kmasli) & 0<j< N}

for : =0,1,..., N, — 1, where it has been assumed that array indices are non-negative
and start at 0. Here Z7T is the set of non-negative integers, and k,,;, and k.., are
integer-valued functions satistying,

Fmin(0) = 0
(4) bin(i) = kmaoli—1)  (i=1,2,...,N, — 1)
fan(N, = 1) = N,

where N. = [N/N,]| - N,, and II(-) is the partitioning function that reorders the index
set {0,1,..., N —1}. Thus, the partitioning in Eq. (3) can be regarded as taking place
in two phases. First the index set is reordered so that the integers II(j) form a sequence
running from 0 up to N — 1. This ordering of the indices is then divided into blocks of
contiguous items. The functions k,,;, and k., should be chosen to ensure good load
balance.

Two common examples of data distributions are the linear and scattered (or wrap)
partitionings. In a linear partition the index set is simply divided into contiguous blocks.
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Thus, no reordering is required, and II(j) = j. In a scattered partitioning the data are
reordered according to the function,

(5) () = [7/Np] + (j mod N,) - [N/N,]

with kpin(2) = ¢ - [N/N,]. This groups together data items whose indices differ by
multiples of N,.

Having partitioned the data each subset must next be assigned to one of the N,
processors. This can be expressed as A(¢) = p, where A(-) is the assignment function,
indicating that the ¢th subset is assigned to processor p. Examples of assignment func-
tions are the identity mapping, A(¢) = ¢, and the binary-reflected Gray code mapping,
A7) = G(2). If ¢x(7) denotes the kth most significant bit of ¢, then the bitwise definition
of G(-)is

(6) cr(G(i)) = XOR (i (i), cn(i)),  k=0,1,...

where XOR denotes the bitwise exclusive OR of its arguments.

In solving the shallow water equations, computations are performed in both the
physical and the spectral domains, and transforming from one domain to the other
involves passing through the Fourier domain. Thus, we must be concerned with the
distribution of data in three domains. In all three domains the basic data structures
are two-dimensional, and the decompositions in the physical and Fourier domains (but
not the spectral domain) can be expressed as Cartesian products of two one-dimensional
decompositions, as explained in more detail below. In all three domains the data are
distributed across a (logical) NV, x N, processor grid. In the next section we describe
the data decomposition in each domain, giving a specific example for the T10 case
decomposed onto a 4 x 4 processor grid.

3.1. Decomposition of the Physical Domain. The physical domain of the
problem is two-dimensional, with longitude being one dimension, and latitude the other.
Longitude and latitude are discretized to form an [ x J grid. In the evaluation of the
spectral coefficients, FFTs are performed over the longitude direction, and integration
(i.e., weighted summation) is performed over the latitude direction. Since there is no
coupling between different data points in either the physical or spectral domain, the
data partitioning can be optimized in the longitude direction for the evaluation of the
FFTs, and in the latitude direction for the integration.

In the FFT algorithm data items interact in a pairwise fashion, and the array
indices of each interacting pair of data items differ in exactly one bit. For this reason, on
hypercube multiprocessors non-local communication in the concurrent FFT algorithm
is minimized if the input data are decomposed in “natural” order. Thus, in the physical
domain a linear partitioning is used in the longitude direction, and the assignment
function in the longitude direction is the identity function.

A linear partitioning could also be used in the latitude direction, but it is compu-
tationally more efficient to process the corresponding latitude lines in the north and
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south hemispheres in pairs. Thus, if ¢ = J/N, is the number of latitudes per processor,
and we define

(7) bi(j) =i - {#J +j mod (i/2)

then in the physical domain the partitioning function in the latitude direction is,

. bi(j) ifj<1/4
(8) 1) :{ P0G i 2 1

The kpin and kpq. in Eqgs. (3) and (4) are chosen so that, as nearly as possible, each
processor contains the same number of data points.

A ring algorithm is used to perform the integration over latitude, and a Gray code
assignment function is used in this direction, since this ensures that neighbors in the
ring are directly connected by a communication channel. It should be noted that this
assignment function is appropriate only for a hypercube topology. For a mesh topology,
for example, the identity function should be used in both the longitude and latitude
directions.

The partitioning of the longitude-latitude grid in the physical domain can be ex-
pressed as the Cartesian product of the one dimensional partitionings in each direction.
Thus, each subset of the data is labeled by two indices, (¢, 7). The assignment function
can be written as,

(9)  AG,j)=i+GG)-N,, (i=01,....N,—1, j=0,1,...,N,—1)

where ((j) denotes the binary-reflected Gray code of j (see Eq. (6)). Note that here
it has been assumed that blocks of contiguous bits in the binary representation of the
processor number have been assigned to each dimension. That is, the least significant
log, N, bits of the processor number correspond to the longitude dimension, and the
most significant log, N, bits to the latitude dimension. In general, the partitioning of
bits over dimensions can be done in any unique way.

3.2. Decomposition of the Fourier Domain. The Fourier domain can be re-
garded as a wavenumber-latitude grid, so like the physical domain, the Fourier domain
is two-dimensional. However, a different decomposition is used. The differences arise
because of the way in which the FFT algorithm permutes the ordering of the output
Fourier coefficients. The one-dimensional FFT produces Fourier coefficients in “bit-
reversed” order. That is, if the number of data points to be transformed is I = 2F,
then the array index of the mth Fourier coefficient is given by the k bits of m writ-
ten in reverse order. Denoting this quantity by By(m) then, for example, B4(12) = 3
since if the 4 bits in the binary representation of 12 are written in reverse order we
get 0011, the decimal representation of which is 3. A second factor also influences the
partitioning in the Fourier domain. As described in Section 4.1, a version of the FFT
algorithm designed for transforming real functions is used. Having performed the FFT
on the half-length complex array, the Fourier coefficients of the original real data are
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found by combining data for indices m and [/2 — m. In general, communication is
needed to bring these points into the same processor. This is done by reordering the
data so that data points to be combined differ by 1 in their array indices. Thus, in the
Fourier domain the partitioning function, II(-), in the wavenumber direction includes
the combined effects of bit reversal and the reordering needed to extract the Fourier
coefficients, and is given by,

o Bu(j) it <1/4
(10) @)= { Bk(éJ/AI — ) ifj’ > /4

The partitioning function in the latitude direction is the same as in the physical domain.

The assignment function in the Fourier domain also differs from that in the physical
domain. The difference arises because of the way that data are communicated in the
outer loop of the FFT algorithm, which is explained in more detail in Section 4.2. In
the Fourier domain the zth set of data in the wavenumber direction is assigned to the
processor obtained by cyclically shifting the d bits of the processor number one bit
to the right (where the number of processors is 2¢). Denoting this quantity by R4(7)
then, for example, R3(1) = 4, since if the 3 bits, 001, of the binary representation of
1 are cyclically shifted one bit to the right we get 100, the decimal representation of
which is 4. A binary-reflected Gray code assignment function is still used in the latitude
direction, so in the Fourier domain the assignment function is

(11) A(2,5) = Ra, (1) + G(j) - Ny, (t=0,1,...,N,—1, j=0,1,....,N,—1)
where d, = log, N,.

3.3. Decomposition of the Spectral Domain. In decomposing the spectral
coefficients, £, a two-dimensional processor grid is again used. In the Fourier domain,
the ith subset of wavenumbers is assigned to column number Ry, (¢) in the processor
grid. A similar partitioning over wavenumber is used in the spectral domain. However,
wavenumbers for which m > M are not used, so in the spectral domain we have the
following partitioning over wavenumber;

(12)  Si={j:j€Z" & knin(t) SU() < kpaal(i) & 0<j <M}

Each column of the processor grid contains N, processors, and column number
Ry, (%) is responsible for the spectral coefficients ", where m € S; and n = m,m +
1,..., M. Within each column of processors these coefficients can be ordered as a linear
array by running first over n and then over m. This array is then divided into subsets
using a linear partitioning, and is assigned to the processors in the column using a
binary-reflected Gray code assignment function. It should be noted that, since the
number of spectral coefficients assigned to each column of processors will differ slightly,
the partitioning of the spectral coefficients cannot be expressed as the Cartesian product
of two one-dimensional partitionings. Some degree of load imbalance will also arise from
this partitioning, and this topic is discussed in Section 5.3.
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3.4. Data Decomposition for an Example Problem. To demonstrate how
the physical, Fourier, and spectral domains are decomposed for a specific problem, we
consider the T10 case for a 4 x 4 processor grid. The T10 case does not have sufficient
resolution to be of practical interest, however, it is useful for illustrative purposes. For
the T10 problem there are 32 data points in the longitude direction and 16 data points
in the latitude direction.

We first consider the decomposition of the physical domain. A linear partitioning
function is applied in the longitude direction leaving the ordering of the longitude indices
unchanged. In the latitude direction the partitioning function given in Eq. (8) is used in
order to pair up corresponding latitude lines in the north and south hemispheres. Since
there are 4 processors in each direction, each processor is responsible for a subblock
of 8 x 4 data points. This is shown in Figure 1(a), in which the thicker lines show
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the divisions between processors, and each small cell represents one data point. The
assignment given in Eq. (9) is used to uniquely associate each data subblock with a
processor. A linear assignment function is applied in the longitude direction, while
in the latitude direction a Gray code assignment function is used. This assignment
is shown in Figure 1(a) by the numbered circles, which indicate the number of the
processor assigned to each data subblock.

Since we evaluate the Fourier coefficients of real functions in the longitude direction,
only the coefficients, ¢™, for m = 0,1,...,1/2, need be explicitly stored. Also, the
imaginary parts of €2 and £//? are identically zero, so the real part of £//? can be stored
as the imaginary part of ¢°. The Fourier domain, therefore, is only half the size of
the physical domain, as shown in Figure 1(b), with each processor containing a 4 x 4
subblock of Fourier coefficients. However, since the Fourier coefficients are complex
numbers the total storage required for a real function and its Fourier coefficients is the
same, and the transform can be done in-place. In performing the FFTs the ordering
of the latitude indices is unchanged. However, the order of the wavenumber index
is scrambled according to the partitioning function given in Eq. (10). This function
permutes the indices into bit-reversed order, and then reorders them so that indices m
and [/2 — m are adjacent. Thus, in Figure 1(b), the wavenumber indices are arranged
in successive pairs, each of which sums to 16. The first two wavenumber indices, 0
and [/4, are exceptions since no communication of data is necessary to extract the
corresponding Fourier coefficients. The assignment of data subblocks to processors is as
prescribed in Eq. (11), that is, the ith subblock in the wavenumber direction is assigned
to column Ry, (¢) of the processor grid, and the jth subblock in the latitude direction
is assigned to row G/(j) of the processor grid.

The decomposition of the spectral domain is illustrated in Figure 2. It should be
recalled that the spectral transform is truncated at m = M, and that for a particular
value of m the index n runs from m to M. In this example M = 10, so wavenumber
indices 11, 12, 13, 14, 15, and 16 are discarded. This is shown in Figure 2(a) by
empty columns. The shaded columns in Figure 2(a) represent the spectral coefficients
included in the spectral transforms. Thus, for example, the first column represents the
coefficients £5,&Y, ..., &Y,. The decomposition over wavenumber index is the same as in
Fourier space, and determines which column of the processor grid ¢ lies in for fixed
m.

Figure 2(a) only shows which spectral coefficients are to be included in the decom-
position of the spectral domain. The actual decomposition is shown in Figure 2(b). In
each column of processors the spectral coefficients to be used are arranged as a single
array by running first over the n index, and then over the m index. This is shown, for
example, in the first column of Figure 2(b). Here the first 11 shaded boxes represent
£ forn =0,1,...,10; the next 3 unshaded boxes represent £2 for n = 8,9,10; and the
next 7 shaded boxes represent £! for n = 4,5,...,10. The shading of boxes is chosen to
clearly distinguish different m values, and has no other significance. Having produced,
for each processor column, a one-dimensional array of spectral coefficients, this array is
decomposed among the processors in each column using a linear partitioning function
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and a Gray code assignment function. Thus, in Figure 2(b), processor 0 is assigned
the first 6 spectral coefficients in the first column, and processors 4, 12, and 8 each
are assigned 5 spectral coefficients. The decomposition of the spectral domain cannot
be expressed as the Cartesian product of two one-dimensional decompositions, rather
it should be regarded as a set of N, one-dimensional decompositions, each over N,
processors. Figure 2(b) shows the load imbalance that arises from discarding spectral
coefficients with m > M. Processor 0 has 6 coefficients, while other processors such as
10 and 11 have only 3 coefficients. The impact of this imbalance will be discussed in
Section 5.3.

4. Algorithmic Details.

4.1. The Sequential FFT Algorithm. The sequential, [-point, forward FFT
algorithm consists of k steps, where I = 2%, In each step, I/2 “butterfly” computations
are performed to update the data values in-place. Each butterfly takes two data items
whose array indices differ by exactly one bit, and uses them to compute two new values
that replace the values of the original two data items. At the end of the k steps the
Fourier coefficients are obtained in bit-reversed order, and the computational complexity
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is O(I log I). The FFT algorithm, therefore, consists of an outer loop over k steps, and
an inner loop over [ /2 butterfly computations.

The computational complexity can be reduced by a factor of two if we seek the
FFT of a real function, rather than that of a complex function. The method followed
was that given in Numerical Recipes [T], which for completeness we shall now outline.
Given the real array, f; for j = 0,1,...,1—1, to be transformed, we generate a complex
array, h, of length I/2, the real and imaginary values of which are the even and odd
points in f, respectively. Thus,

(13) %(h]):f%? %(hj):f%-l-l? (]:07177]/2_1)

After performing a complex [ /2-point FFT on the array h, to give the Fourier transform,
H, the transform, F', of the original real function f can be extracted as follows;

¢

(14) Fp =2 (Ho+ Hipo ) — 5

5 (Ho = Hippoy) €m0 (m=0,1,...,1/2)

where z* denotes the complex conjugate of z, and ¢ = \/—1. Since F} = F,, in
general we need store only the spectrum for m = 0 to m = [ /2. For the spectral method
used in this work the spectrum is truncated at some value M satisfying I > 3M + 1,
so the upper half of the spectrum is not needed in any case. To perform the inverse
transform, the complex transform H can be recovered from Eq. (14), and an I/2-point
inverse FFT is performed on this array, leading directly to the real-valued array, f.

4.2. The Parallel FFT Algorithm. The parallel FFT of 2% points on a d-
dimensional hypercube has a d-step parallel phase, followed by a (k — d)-step sequential
phase [3,8]. The parallel phase is similar to the first d steps of the sequential algorithm,
except that interprocessor communication is required to bring the pairs of data points
updated in each butterfly into the same processor. In addition, in both the parallel and
sequential phases, the number of “local” butterflies done per step in each processor is
/2, where 7 is the number of data items per processor.

In the early parallel FFT algorithms (for example [4]), communication was per-
formed within the inner loop of the algorithm. Thus, a message was sent in each pass
through the inner loop, each time incurring a communication latency cost. For early
hypercubes, such as the Caltech/JPL Mark Il hypercube, this latency cost was small
compared with the total cost of sending a message, and so inner loop communication did
not degrade performance too much. However, for modern machines the overhead due
to latency for short messages can dominate the communication cost, and this precludes
the use of inner loop communication for most algorithms on machines like the Intel
iPSC/860 hypercube. We, therefore, move the communication in the parallel phase of
the FFT to the outer loop. This reduces the communication latency by a factor of
about /2, and also reduces the communication volume by a factor of 2.

In step r of the parallel phase of the algorithm (r = 0,1,...,d — 1), processor p
swaps half of its data items with half of those in processor ¢, where ¢ is the number
obtained by flipping bit (d — r — 1) of p. Bits are numbered in order of increasing
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significance, starting from 0. If bit (d — r — 1) of processor p is 0 then p swaps its
upper ¢/2 data items with the lower /2 data items of processor ¢; otherwise, p swaps
its lower ¢/2 data items with the upper ¢/2 data items of ¢. This communication of data
in the parallel phase can be expressed as a series of d bitwise exchanges in the binary
representation of the global index. Swarztrauber [8] refers to these types of bitwise
transformation of the global index as ¢-cycles (see also [6]). The global index consists
of k bits. For a linear partitioning function the (k — d) least significant bits give the
local index within a particular processor, and if the assignment function is the identity
function the d most significant bits give the processor number. In step r of the parallel
phase, bit (k — d — 1) of the global index, which is the most significant bit of the local
index, and bit (kK —r — 1) are swapped. After the d steps of the parallel phase the
original bits of the global index have been permuted as follows;

Original bit order Bit order after d steps
(k—1,k—2,...,1,0) = (k—d—-1k—=1,k—2,...0k—dk—d—2,...,1,0)

Now one more communication step exchanging bits (k — 1) and (k — d — 1) results in
the following ordering,

(k—dk—1k—2,... k—d+1,k—d—1,...,1,0)

The (k — d) least significant bits are now in their original order, indicating that the
ordering of data items within each processor has been left unchanged by the (d + 1)
communications. The d most significant bits, however, have been cyclically shifted one
bit to the right. This means that the net effect of the communication is to place the
data that would otherwise be in processor p in processor R4(p). Thus, the assignment
function has changed from the original identity function, A(i) = ¢, to A(z) = Ra(7).
These changes occur in addition to the bit reversal produced by the FFT algorithm,
which changes the partitioning function from II(j) = j to II(y) = Bk(j).

Having performed the FFT on the complex array, H, it is still necessary to combine
the data items at array indices m and /2 —m for m =0,1,...,1/4 in order to get the
FFT of the original real array (see Eq. (14)). To do this the data to be combined need
to be in the same processor, and this requires that the partitioning function be further
modified to the form given in Eq. (10).

4.3. Integration over Latitude. Having evaluated the Fourier coefficients, £ (y;),
along each latitude line, p;, the spectral coeflicients are found by summing over latitude,

J-1 Ny—1 Ny—1
(15) & =D &M ()Pl (pjwi = Y (Z fm(ﬂj)Pf(ﬂj)wj) = > T()
7=0 =0 JEL; =0
where £; is the ith index subset in the partitioning over latitude. The partial sums,

T (2), can be evaluated within each processor with no communication. Thus, the

m

evaluation of the spectral coefficients, £,

requires the summation of N, partial sums.
This summation is performed independently in each column of the processor grid using

a ring algorithm, and is described in detail in [11]. The ring algorithm proceeds in
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N, — 1 steps. Initially each processor evaluates the partial sums, 7", for the spectral
coefficients assigned to its neighbor in the decomposition of the spectral domain. In the
first step of the ring algorithm each processor passes these partial sums one step around
the ring. Each processor receives a set of partial sums, and evaluates its contribution
to each. The contributions are then added to the partial sums. After N, —1 such steps
all contributions have been summed, and the decomposition of the spectral coefficients
is as described in Sections 3.3 and 3.4.

5. Results and Discussion. We shall first describe the incremental steps taken
in developing the concurrent code for solving the shallow water equations, and then
results for the optimum implementation will be presented and discussed. In all cases
the code was compiled with release 1.1 of The Portland Group 1860 Fortran compiler,
with the default optimization level of 1.

The process of implementing the shallow water equation code on the 128-node
Intel iPSC/860 hypercube began with a sequential version suitable for executing on a
Unix workstation. In the first phase of the concurrent implementation the data were
decomposed only over the y direction, which corresponds to latitude in the physical and
Fourier domains and to spectral coefficient index in the spectral domain. The data were
not decomposed over the x direction (the latitude/wavenumber direction). This allowed
the original FFT routines in the sequential code to be used, and effort was focused on
optimizing the parallel summation over latitudes in Eq. (2). In the second phase of the
implementation, decomposition over both the y and = directions was investigated.

5.1. Parallel Summation. Results for the parallel summation in Section 4.3 have
been presented and discussed at length in [11], so we shall just summarize these results
here. In [11] the problem domains were partitioned in only the y direction, so N, = 1. In
the physical and Fourier domains each processor is responsible for a set of latitude lines,
as in Eq. (8). In the first attempt at parallelizing the code the spectral coefficients were
duplicated in all processors. Each processor evaluated its contribution to each spectral
coefficient, and these contributions were then summed over all processors. In this case
the inverse transform could be found locally since each processor holds all the spectral
coefficients. This approach is simple to implement, requiring few changes to the original
sequential code. However, it was found to be unacceptable due to high communication
costs, and the duplication of computation in the spectral domain. The duplication of
spectral coefficients also wastes memory.

The second approach also partitioned the spectral coefficients, as described in Sec-
tion 3. This eliminated most of the redundant computation, and also improved the
concurrent efficiency of the summation phase of the spectral transform. This summa-
tion was performed using a ring pipeline, as described in Section 5.4, and the application
ran efficiently for problem sizes of interest on the 128-node Intel iPSC/860 hypercube.
For the T340 problem running on 128 nodes a speed of 340 Mflops was achieved.

5.2. Parallel FFTs. Decomposing the data over just the y direction limits the
number of processors that can be brought to bear on the solution of the shallow water
equations, and hence the extent to which the problem’s inherent parallelism can be ex-
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ploited. In order to make effective use of the computational power of massively parallel
MIMD computers, containing hundreds or thousands of processors, it is necessary to
decompose data domains in the x direction as well as the y direction. In the shallow
water equation code Fourier transforms are performed in the longitude direction, and so
decomposition in this direction requires the development of a parallel FFT algorithm.

The basic structure of the parallel FFT algorithm has already been described in
Section 4.2, and will be referred to as version 1. However, some tuning was required to
get acceptable performance. The tuning concentrated on the following three areas:

1. replacing the evaluation of the complex exponentials in the butterfly calcula-
tions by a lookup table,

2. reducing communication latency by reducing the number of messages sent, and

3. masking communication costs by overlapping communication and calculation.

We refer to the code produced by replacing the evaluation of the complex exponentials
by a lookup table as version 2. As shown in Table 1, version 2 runs significantly faster
than version 1. For the T85 case with N, x N, = 1 x 32 (i.e., for sequential FFTs)
the performance improved by a factor of 4. It is important to note that although
the concurrent efficiency of version 1 is larger than that of version 2, its performance
is poorer — judging an algorithm on the basis of efficiencies can be misleading. The
efficiency is useful in gauging the scalability of an algorithm, but by itself cannot be
used to determine the best algorithm on a given concurrent machine. The memory
requirements for the lookup tables for the forward FFT are O(7), while for the inverse
FFT they are O(ilog N,.), where 7 is the length of the FFT, I, divided by the number
of processors, N,. If only a single FFT needs to be computed the lookup tables may
consume a relatively large amount of memory. However, in the shallow water equation
code each processor, in general, evaluates several FF'Ts, thereby amortizing the memory
cost.

The next step in tuning the parallel algorithm involved attempting to modify ver-
sion 2 to reduce communication latency, and to overlap communication and calculation.
As noted by Walker [9], if the communication is performed in the outer loop the butterfly
calculations in a single FFT cannot be overlapped with communication. The evalua-
tion of the complex exponentials can be overlapped with communication, but since we
are using a lookup table this is not an option. We could put the communication back
inside the inner loop, which does permit the butterfly calculation to be overlapped with
communication. This may be a good approach on some machines, however, for the
Intel iPSC/860 any gains from overlapping communication and calculation would be
swamped by the higher latency overhead.

Fortunately the shallow water equation code contains another outer loop that we
have so far ignored. Namely, the loop over the latitudes in each processor. By making
the loop over latitude the inner loop (rather than the outer loop) we can perform the
communication necessary at a given step of the FFT for all latitudes at the same time.
This approach requires data to be packed into and unpacked out of communication
buffers, and the communication buffers require memory of order the size of the original
data, however the communication latency is reduced by a further factor of n;;, the
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number of latitude lines per processor. Essentially, changing the order of the loops
allows us to push the communication to an outer level of the loop hierarchy, and that
is why latency is reduced.

Since the FF'Ts over different latitude lines are independent we can now also overlap
communication and calculation. This is done by dividing the latitude lines in each
processor into two equally-sized sets. While the calculations for the first set are being
performed the communication for the second set is done, and vice versa. We refer to
the code that incorporates these modifications as version 3.

In Table 1, we present results for the T85 case for versions 1, 2 and 3 on up to
128 nodes of the Intel iPSC/860 hypercube. Version 3, in which latency is lowest
and communication is overlapped with computation, is clearly the best algorithm. In
version 2, decomposing over the z-direction for a fixed number of processors always
results in poorer performance. However, in version 3 the performance at first improves
as N, increases, and then falls off when it is increased further, as shown in Figure 3.
This behavior arises because as /N, increases the time to do the FFTs also increases
due to the higher concurrent overhead. However, for a fixed number of processors an
increase in N, reduces N, so the concurrent summation described in Section 4.3 will
be performed more efficiently. An increase in N, also increases the load imbalance in
the summation phase. The net effect of these conflicting trends is to produce a shallow
minimum in the plot of processing time versus N,. However, if the grain size in both
directions is large enough, then both the FFT and summation phases will be computed
efficiently, and load imbalance will result in a monotonic rise in the processing time as
N, increases, as may be seen in some of the entries in Table 2 (for example, T85 on up
to 16 processors).

Having determined that version 3 gives reasonably good performance, we then went
on to use version 3 for problem sizes T21, T42, T85, T169, and T340, for processor grids
with different sizes and shapes. The results are presented in Table 2.

Figure 4 illustrates how the shape of the processor mesh affects performance. In
Figure 4 the time for 10 time steps of the T85 case is plotted as a function of the
total number of processors for a purely latitudinal decomposition (N, = 1), a purely
longitudinal decomposition (N, = 1), and for the mixed decomposition that gives the
best performance. Both Figures 3 and 4 show how a mixed decomposition results in
better performance, particularly for smaller grain sizes. Figure 4 also shows that for
a mixed decomposition 128 processors can be used, whereas for a purely longitudinal
(latitudinal) decomposition only up to 64 processors can be used due to an insufficient
number of longitude (latitude) points. Thus, the mixed decomposition allows more
parallelism to be exploited.

In Figure 5 the parallel efficiency of the shallow water equation code is shown for a
number of problem sizes as a function of the number of processors. The results shown
are for the best mixed decomposition case, except in the T340 case where memory
constraints precluded a more complete investigation. Figure 5 shows that for the larger
problem sizes of interest (T85, T169, T340) good parallel efficiency is achieved. The
results indicate that for the T169 and T340 cases high efficiency would be achieved on
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T85 timings for 10 time steps (seconds)

N, x N, Version 1 | Version 2 | Version 3
1 x 32 7.98 2.05 2.02
2 x 16 8.14 2.39 1.82
4 %8 9.70 4.21 1.78
8 x4 8.88 3.55 1.85

16 x 2 12.18 6.39 2.05

32 x 1 20.12 12.69 2.32
1 x 64 4.43 1.43 1.59
2 x 32 4.29 1.43 1.30
4 %16 4.96 2.22 1.18
8 x 8 4.52 1.84 1.17

16 x 4 6.15 3.23 1.25

32 x 2 10.09 6.33 1.38

64 x 1 19.01 13.32 1.70
1 %128 Too few latitudes
2 x 64 2.50 1.05 1.03
4 % 32 2.66 1.29 0.88
8 x 16 2.35 1.02 0.80

16 x 8 3.12 1.67 0.81

32 x4 5.08 3.20 0.87

64 x 2 9.53 6.68 1.04

128 x 1 Too few longitudes

15

Table 1. Timings for the T85 case on 32, 64, and 128 nodes of the Intel iPSC/860

hypercube. The three versions are discussed in the text.
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Version 3 timings for 10 time steps (seconds)

Np x Ny T21 T42 T85 T169 T340
1 x1 1.13 6.21 40.83 NEM* NEM
1 x2 0.61 3.06 20.43 NEM NEM
2 x1 0.81 3.72 22.55 NEM NEM
1 x4 0.36 1.62 10.41 NEM NEM
2 %32 0.48 1.91 11.42 NEM NEM
4 x1 0.61 2.12 12.10 NEM NEM
1 x8 0.24 0.94 5.43 30.39 NEM
2 x4 0.33 1.05 5.86 31.25 NEM
4 x 2 0.44 1.17 6.19 NEM NEM
8 x1 0.51 1.34 6.66 NEM NEM
1 x16 0.21 0.61 3.10 16.15 NEM
2 %8 0.28 0.64 3.14 15.94 NEM
4 x4 0.37 0.71 3.25 16.42 NEM
8 x 2 0.42 0.80 3.48 NEM NEM

16 x 1 0.49 0.92 3.90 NEM NEM
1 %32 LATY 0.55 2.02 9.14 NEM
2 x 16 0.22 0.52 1.82 8.75 NEM
4 x8 0.24 0.57 1.78 8.66 NEM
8 x4 0.26 0.61 1.85 8.78 NEM

16 x 2 0.30 0.69 2.05 NEM NEM

32 x 1 LONI 0.82 2.32 NEM NEM
1 x 64 LAT LAT 1.59 5.95 31.22
2 x 32 LAT 0.45 1.30 5.02 NEM
4 x 16 0.25 0.45 1.18 4.70 NEM
8 x8 0.25 0.46 1.17 4.68 NEM

16 x 4 0.27 0.50 1.25 4.92 NEM

32 x 2 LON 0.58 1.38 NEM NEM

64 x 1 LON LON 1.70 NEM NEM
1 x 128 LAT LAT LAT 4.52 20.20
2 x 64 LAT LAT 1.03 3.33 16.20
4 x 32 LAT 0.38 0.88 2.79 NEM
8 x 16 0.27 0.33 0.80 2.62 NEM

16 x 8 0.27 0.33 0.81 2.68 NEM

32 x 4 LON 0.36 0.87 2.84 NEM

64 x 2 LON LON 1.04 NEM NEM

128 x 1 LON LON LON NEM NEM

TNot enough latitudes. {Not enough longitudes. *Not Enough Memory

Table 2. Timings for the version 3 code on up to 128 nodes of the Intel iPSC/860
hypercube for a range of problem sizes.
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Figure 3. Performance of the T85 case as a function of the shape of the processor mesh.

larger machines, provided the characteristics of the communication system were at least
as good as those of the machine used here. In particular, we expect the T169 and T340
cases to run efficiently on the 528-processor Intel Delta system.

5.3. Load Imbalance. The maximum number of spectral coefficients assigned to
any column of processors is given by

(16) Lo = (R+1) (M 41— NI’R)

where R = [(M + 1)/N,]|. Since the same amount of work is done on each spectral
coefficient, the load imbalance, (5, in the spectral domain (defined as the maximum
excess computational load in any processor divided by the average load) is

2Ny [Limar [Ny

(17) ey !

where N, = N,N, is the total number of processors. In Figure 6 we plot the load
imbalance, {;, as a function of the number of processors for a range of problem sizes
for the case N, = 1. For the N, =1 case, the load imbalance is maximized for a given
number of processors. As may be deduced from Figure 6, the load imbalance is less
than 20% provided there are at least 16 longitude points per processor. Of course, the
overall impact of this load imbalance on the performance of the application depends on
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Figure 4. Performance of the T85 case as a function of the number of processors for pure
latitudinal and longitudinal decompositions, and for the best mixed decomposition.

the relative amounts of computation performed in the physical, Fourier, and spectral
domains.

5.4. Masking Communication Overhead. Our results have shown the impor-
tance of reducing communication overhead on concurrent multiprocessors, such as the
Intel iPSC/860 hypercube, by overlapping communication and calculation. We, there-
fore, devote this subsection to a more general discussion of how communication and
calculation can be overlapped in loosely synchronous parallel algorithms. The use of
these techniques is illustrated with examples from our parallel implementation of the
shallow water equations code, SSWMSB.

Loosely synchronous algorithms are characterized by a series of compute-communicate
cycles in which the communication phase imposes a degree of synchronization on the
processors [3]. In the computational phase between communications the processors can
run completely asynchronously. Fach cycle can be labeled by a global counter. Typ-
ically a cycle begins with each processor receiving data from one or more processors.
The processors then independently perform some computation using the data received,
and send the results to some set of processors for use in the next cycle. We shall refer
to the work done by a single processor in a cycle as a subtask, and the process of trans-
forming some initial data through a series of subtasks to produce some desired output
will be referred to as a task. In general the compute phase of a subtask can be divided



PARALLELIZING THE SPECTRAL TRANSFORM METHOD. PART II 19

1.00
08| -
g 06| -
5
5
e
g 04} -
T21
02 * -
A %
T42
A
0.0 ! ! ! ! ! ! !
o 1 2 3 4 5 6 7 8

Log, N,

Figure 5. Parallel efficiency of the shallow water equation code for the best mixed
decomposition as a function of number of processors for a number of problem resolutions.
In the T21 case grain size constraints did not permit the best decomposition to be
unambiguously determined for runs on 32 and 64 processors. In the T169 case memory
constraints prevented a timing run on one node being done. The parallel efficiencies in
these cases are, therefore, derived from an estimated one-processor runtime based on
an empirical model.

into a critical phase in which the computation depends on data from the preceding sub-
task(s), and a non-critical phase that is independent of the preceding subtask(s). The
effective use of concurrent computers characterized by high communication overhead,
such as the Intel iPSC/860 hypercube used in this work, requires communication costs
to be masked by overlapping communication and computation. Two approaches used in
this work are to overlap the communication phases of a task with (1) the computation
phases of another task, and (2) the non-critical computation phases of the same task.

A pipeline can be used to perform a set of independent tasks, the number of subtasks
in each of which equals the number of processors. In a linear pipeline the processors
are arranged in a line, and the ¢th subtask for each task is assigned to the processor at
position ¢ in the line. Each task is initiated in the processor at the beginning of the line,
and the results are accumulated in the last processor, as shown in Figure 7(a). If all
the subtasks take approximately the same length of time the linear pipeline can provide
an efficient means of exploiting parallelism, particularly when the inner loop(s) of the
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Figure 6. Load imbalance, £, as a function of number of processors, N,, when N, = 1.

algorithm contain little inherent parallelism. This approach has been used, for example,
in the solution of multiple tridiagonal systems arising in a plasma instability problem
[2]. In many problems it is desirable to have the final results distributed evenly across
the processors. This can be achieved by using a ring pipeline, in which each processor
in turn initializes a task. As shown in Figure 7(b), the tasks now terminate in different
processors. An advantage of the ring pipeline over the linear pipeline is that, if the
number of tasks is exactly divisible by the number of processors, there is no pipeline
startup cost — all processors are kept busy. The advantage of the linear pipeline is
that the computation of one task can be performed while receiving data for the next
task. In the ring pipeline only the non-critical computation of a task can be performed
while receiving data needed for the critical computation phase of the same task. Thus,
in general, a larger fraction of the computation is available for overlap in the linear
pipeline.

Whereas the tasks in a pipeline algorithm are independent, in a dimensional ex-
change algorithm they overlap, and a subtask sends data to subtasks in different tasks.
Each task can be represented as a binary tree, with each node being a subtask. The
dimensional exchange algorithm overlaps these trees, as shown in Figure 7(c). On a
hypercube multiprocessor a dimensional exchange algorithm involves exchanging data
over each communication channel in turn. The parallel phase of a FFT is an example
of a dimensional exchange algorithm.
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(a) Linear Pipeline PO (b) Ring Pipeline
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(c) Dimensional Exchange Algorithm

75 EE

Figure 7. Schematic representations of (a) a linear pipeline, (b) a ring pipeline, and

(¢) a dimensional exchange algorithm. In all cases 4 tasks are shown, and the shaded
circles represent subtasks. The degree of shading indicates how much of the task has
been completed at a given stage — a white circle designates a subtask in the first cycle
of a task, and a black circle designates the end of the task. In (a) and (b), Pn stands
for the nth position in the pipeline. In (c¢), we show how the dimensional exchange
algorithm is made up of overlapping binary trees.

In summing the contributions to the Legendre transform the non-critical phase is
the evaluation of the local contributions to a spectral coefficient, referred to as T
in Eq. (15). The critical phase is simply the summation of the local contribution
with the running sum received from the preceding subtask. In the FFT algorithm
the critical phase is the evaluation of butterfly pairs, and the non-critical phase is the
determination of the complex exponential in the “twiddle factor”. The ratio of the time
spent communicating between two subtasks and the time for a non-critical computation
determines the extent to which communication and calculation can be overlapped. In
the evaluation of the spectral coefficients in Eq. (15) the time for the non-critical phase
is proportional to the number of latitudes per processor, and hence the amount of
overlap (and the concurrent efficiency) increases as the grain size increases in the latitude
direction. In the FFT algorithm a lookup table is used to find the twiddle factors,
resulting in a short non-critical phase. Thus, there is little overlap of communication
and computation within a single FFT. If several FFTs need to be evaluated, as is
the case in the shallow water equation code, communication and calculation can be
overlapped. Taking the FFTs in pairs, the calculation in one step of one FFT can
be overlapped with the communication in the other FFT, and vice versa. Thus, the
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communication and calculation phases of the two FFTs are interleaved, and we refer to
this technique as task interleaving.

Communication latency also often significantly degrades concurrent performance,
and should be minimized by sending as few messages as possible. This can be done,
whenever possible, by exchanging the order of the loops over tasks and subtasks. Thus,
if a code originally contains an outer loop over tasks and an inner loop over subtasks,
it should be restructured so that the subtask loop is the outer loop and the task loop is
the inner loop. This reduces latency by moving communication from the inner loop to
the outer loop. For example, in performing the summation in the Legendre transform
a single task is to find the spectral coefficient, 7, for some m and n. The subtasks
correspond to the steps in the pipeline. Thus, latency is reduced if the inner loop is
over spectral coefficients, and the outer loop is over the steps in the pipeline. In this
case, in each step of the pipeline, the running sum for a block of spectral coefficients is
updated, rather than just for a single spectral coefficient, and blocks of coefficients are
communicated. Similarly, in the evaluation of the FFTs, if a task is the evaluation of a
single FFT, and a subtask involves the computation of one set of butterfly evaluations in
a processor, then latency can be reduced by making the loop over FFTs (i.e., latitudes)
the inner loop. Now when we perform the interleaving, instead of taking single FFT's
in pairs, we interleave two blocks of FFTs each containing half the number of latitude
lines per processor.

It should be noted that a dimensional exchange algorithm could also be used to
perform the summation in the Legendre transform. This approach uses a version of
the fold algorithm of Fox et al. [3]. The communication volume is the same in the
fold algorithm and the corresponding pipeline algorithm. However, fold performs fewer
communication steps and hence incurs a lower latency cost. On the other hand, in
the fold algorithm less of the non-critical computation is available for overlap with
communication since half of it must be done before the first communication phase. The
optimum method for performing the summation is, therefore, machine-dependent, and
further work is required to determine the best method on the Intel iPSC /860 hypercube,
and similar machines. These issues will be pursued further in a subsequent paper.

6. Summary and Conclusions. In the climate modeling community problem
sizes of interest range from T85 to T340, corresponding to grid resolutions from about
1.5 degrees to less than half a degree. For these types of problem the spectral method
can be parallelized efficiently on MIMD distributed memory computers with hundreds
of processors. The Intel iPSC/860 hypercube used in this work only had 8 Mbytes of
memory on each processor, and this prevented a thorough investigation of the T340
case. Of the T340 runs that were performed, a 2 x 64 processor mesh gave the highest
performance of approximately 560 Mflops. If more memory had been available we
expect the performance would have been greater for less elongated processor meshes.
This expectation is based on the results for T85 and T169 cases running on 128 nodes.

It was found that in all cases of interest parallel performance is significantly im-
proved by decomposing over both coordinate directions, rather than over just one or
the other. Using a mixed decomposition resulted in performance improvements of up
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to 42%. In addition, a mixed decomposition allowed more processors to be brought to
bear on a given problem.

The Intel iPSC/860 hypercube, and similar multiprocessors, have high communica-
tion latency and throughput costs, and acceptable levels of performance are achievable
only if specialized programming techniques are used. In this work, we have empha-
sized the importance of reducing latency by moving communication to the outermost
loop possible. Another important factor is the need to overlap communication and
computation. This can be done by identifying the non-critical part of each phase of
computation, and overlapping this with communication. The communication must be
performed using non-blocking reads and writes. Some additional buffers are required to
maintain data integrity, but we have found the cost of this extra memory to be small
in comparison with the benefits gained.

In the FFT algorithm the time for the non-critical computation is very short com-
pared with the communication time, so there is no opportunity to overlap communi-
cation and computation in a single FFT. To achieve overlap we have introduced the
concept of task interleaving. By alternating the computation and communication phases
of a pair of independent tasks the critical computation of one task can be overlapped
with the communication in the other, and wvice versa.

If no attempt is made to reduce latency and overlap communication and compu-
tation, many of the distributed memory multiprocessors currently available are only
capable of running efficiently on embarrassingly parallel problems. The techniques that
have been used in this work to reduce communication costs demonstrate that it is pos-
sible to use this type of multiprocessor to effectively exploit parallelism in a much larger
class of applications.

We intend to incorporate what we have learned from parallelizing the shallow water
equations code into the design of a parallel version of CCM2. This will require addition
issues to be addressed. In particular, in CCM2 a semi-Lagrangian method will be
applied in the physical domain. This will result in load imbalance since the polar and
equatorial regions must be processed in different ways, and suggests that our method
of decomposing the problem domains may need to be modified. The load imbalance
in the radiative calculation must also be considered in developing an efficient parallel
code. See [11] for a more thorough discussion of how this work can be applied when

parallelizing CCM2.
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