
CONCURRENCY: PRACTICE & EXPERIENCE, 4(7), 509-531 (OCT. 1992)PARALLELIZING THE SPECTRAL TRANSFORM METHOD. PART IIDAVID W. WALKER� , PATRICK H. WORLEY� AND JOHN B. DRAKE�Abstract. The spectral transform method is a widely-used numerical technique for solving partialdi�erential equations on the sphere in global climate modeling. This paper describes the parallelizationand performance of the spectral method for solving the nonlinear shallow water equations on thesurface of a sphere using a 128-node Intel iPSC/860 hypercube. Solving the shallow water equationsrepresents a computational kernel of more complex climate models. This work is part of a researchprogram to develop climate models that are capable of much longer simulations at a signi�cantly�ner resolution than current models. Such models are important in understanding the e�ects of theincreasing atmospheric concentrations of greenhouse gases, and the computational requirements are solarge that massively parallel multiprocessors will be necessary to run climate models simulations in areasonable amount of time.The spectral method involves the transformation of data between the physical, Fourier, and spectraldomains. Each of these domains is two-dimensional. The spectral method performs Fourier transformsin the longitude direction followed by summation in the latitude direction to evaluate the discretespectral transform. A simple way of parallelizing the spectral code is to decompose the physicalproblem domain in just the latitude direction. This allows an optimized sequential FFT algorithmto be used in the longitude direction. However, this approach limits the number of processors thatcan be brought to bear on the problem. Decomposing the problem over both directions allows theparallelism inherent in the problem to be exploited more e�ectively { the grain size is reduced, so thatmore processors can be used.Results are presented that show that decomposing over both directions does result in a morerapid solution of the problem. The results show that for a given problem and number of processors,the optimum decomposition has approximately equal numbers of processors in each direction. Loadimbalance also has an impact on the performance of the method. The importance of minimizingcommunication latency and overlapping communication with calculation is stressed. General methodsfor doing this, that may be applied to many other problems, are discussed.Key words. hypercube multiprocessors, parallel Fourier transform, parallel Legendre transform,parallel spectral transform method shallow water equations,AMS(MOS) subject classi�cations. primary 65W05; secondary 65M60, 68M201. Introduction. In order to understand the e�ects of the increasing atmosphericconcentrations of greenhouse gases, climate models are needed that are capable of muchlonger and more numerous simulations at a signi�cantly �ner resolution than are cur-rently available. Developing such an advanced climate model will require advances inhardware, numerical algorithms, and model physics. In particular, it is clear that mas-sively parallel multiprocessors will be necessary to run such simulations in a reasonableamount of time. As part of this research e�ort, we are investigating whether currentnumerical techniques are suitable for use in an advanced climate model.The spectral transform method [5] is a widely-used numerical technique for solving� Mathematical Sciences Section, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, Ten-nessee 37831-6367 (walkerdw@ornl.gov, worleyph@ornl.gov, or bbd@ornl.gov). This research wassupported by the Atmospheric and Climate Research Division, O�ce of Energy Research, U.S. De-partment of Energy under contract DE-AC05-84OR21400 with Martin Marietta Energy Systems Inc.1

2 DAVID W. WALKER, PATRICK H. WORLEY, AND JOHN B. DRAKEpartial di�erential equations on the sphere in global climate modeling (see, for example,[1]). For example, it is used in CCM1 [10] (the Community Climate Model 1), and itssuccessor CCM2. There are both numerical and algorithmic issues to be consideredbefore using the spectral transform method for climate models with much �ner resolu-tions. In the work described here, we restrict ourselves to investigating how e�cientlythe spectral transform method can be parallelized on distributed memory multipro-cessors, and how this performance is likely to scale as both the problem size and thenumber of processors increase.In this paper, which follows on from the preliminary work described in [11], re-sults are presented for a parallel FORTRAN program that uses the spectral transformmethod to solve the nonlinear shallow water equations on the sphere. These resultsshow that an e�cient implementation is possible on a 128-node Intel iPSC/860 hy-percube, and that the high-resolution cases of interest are expected to run e�cientlyon larger, more powerful, distributed memory machines, such as the Intel Delta andSigma multiprocessors. The results also highlight the need for specialized programmingtechniques on machines for which computation is fast compared with the asymptoticcommunication speed and message latency. Except for embarassingly parallel problems,such machines can be exploited e�ciently only if steps are taken to reduce and/or maskthe e�ects of communication overhead. In this work we use large granularity pipeliningand task interleaving to reduce the impact of communication overhead to an acceptablylow level. These techniques, discussed in more detail in Section 5.4, are applicable to alarge class of scienti�c and engineering problems.2. The Problem. The shallow water equations constitute a simpli�ed weatherprediction model that has been used to investigate numerical methods, and benchmarka number of machines. The sequential code, SSWMSB, from which the parallel versiondescribed in this work was derived, was originally written by Dr. J. J. Hack at NCAR.This particular code is a good approximation to a computational kernel of CCM2,which is currently being developed at the National Center for Atmospheric Research(NCAR). We are currently developing a parallel version of CCM2 that will run onthe Intel iPSC/860 and similar multiprocessors, and will present our initial results inparallelizing CCM2 in a subsequent paper.The SSWMSB code uses the spectral transform method to solve the shallow waterequations on the surface of a sphere. In each timestep the state variables of the prob-lem are transformed between the physical domain, where most of the physical forcesare calculated, and the spectral domain, where the terms of the di�erential equationare evaluated. A more complete description of the method is given in [11]. The spec-tral representation of a state variable, �, on the surface of a sphere is de�ned by anapproximation to the variable by a truncated series of spherical harmonic functions,�(�; �) = MXm=�M N(m)Xn=jmj �mn Pmn (�)eim�(1)where � = sin �, � is latitude, � is longitude, and Pmn (�) is the associated Legendrefunction. In the physical domain, state variables are approximated on an I�J longitude-

PARALLELIZING THE SPECTRAL TRANSFORM METHOD. PART II 3latitude grid. Exact, unaliased transforms of quadratic terms are obtained ifM is chosento satisfy J � (3M + 1)=2, and if I = 2J , and N(m) = M . In this work we use a fastFourier transform (FFT) algorithm that requires I to be a power of 2, and M is chosento be the minimum value satisfying the preceding conditions. Thus, the value of Mcharacterizes the grid resolution, and the term \TM" is used to denote a particulardiscretization. For example, the T85 case has M = 85, J = 128, and I = 256.Transforming from physical coordinates to spectral coordinates involves performingan FFT for each line of constant latitude, followed by integration over latitude usingGaussian quadrature to obtain the spectral coe�cients,�mn = J�1Xj=0 �m(�j)Pmn (�j)wj(2)where �m is the mth Fourier coe�cient, and wj is the Gaussian quadrature weightcorresponding to latitude �j. In the parallel implementation, the fast Fourier transformand the integration over latitude, that together give the spectral transform, de�ne theproblem. All other calculations, such as advancing the spectral coe�cients by one timestep, and optionally �ltering the solution to improve stability, are perfectly parallel,requiring no interprocessor communication.3. Data Distribution. In general, a one-dimensional array of data can be dis-tributed (or decomposed) among a set of processors by �rst arranging the data intonon-intersecting subsets, and then uniquely assigning one subset to each processor. Inmany cases, the decomposition of arrays over more than one dimension can be expressedas the Cartesian product of one-dimensional decompositions over each array dimension.The indices of a one-dimensional array of N items can be partitioned into Npsubsets, Ji, as follows,Ji = f j : j 2 Z+ & kmin(i) � �(j) < kmax(i) & 0 � j < N g(3)for i = 0; 1; : : : ; Np � 1, where it has been assumed that array indices are non-negativeand start at 0. Here Z+ is the set of non-negative integers, and kmin and kmax areinteger-valued functions satisfying,kmin(0) = 0kmin(i) = kmax(i� 1) (i = 1; 2; : : : ; Np � 1)(4) kmax(Np � 1) = Nc;where Nc = dN=Npe �Np, and �(�) is the partitioning function that reorders the indexset f0; 1; : : : ; N � 1g. Thus, the partitioning in Eq. (3) can be regarded as taking placein two phases. First the index set is reordered so that the integers �(j) form a sequencerunning from 0 up to N � 1. This ordering of the indices is then divided into blocks ofcontiguous items. The functions kmin and kmax should be chosen to ensure good loadbalance.Two common examples of data distributions are the linear and scattered (or wrap)partitionings. In a linear partition the index set is simply divided into contiguous blocks.

4 DAVID W. WALKER, PATRICK H. WORLEY, AND JOHN B. DRAKEThus, no reordering is required, and �(j) = j. In a scattered partitioning the data arereordered according to the function,�(j) = bj=Npc+ (j mod Np) � dN=Npe(5)with kmin(i) = i � dN=Npe. This groups together data items whose indices di�er bymultiples of Np.Having partitioned the data each subset must next be assigned to one of the Npprocessors. This can be expressed as A(i) = p, where A(�) is the assignment function,indicating that the ith subset is assigned to processor p. Examples of assignment func-tions are the identity mapping, A(i) = i, and the binary-re
ected Gray code mapping,A(i) = G(i). If ck(i) denotes the kth most signi�cant bit of i, then the bitwise de�nitionof G(�) is ck(G(i)) = XOR(ck+1(i); ck(i)); k = 0; 1; : : :(6)where xor denotes the bitwise exclusive or of its arguments.In solving the shallow water equations, computations are performed in both thephysical and the spectral domains, and transforming from one domain to the otherinvolves passing through the Fourier domain. Thus, we must be concerned with thedistribution of data in three domains. In all three domains the basic data structuresare two-dimensional, and the decompositions in the physical and Fourier domains (butnot the spectral domain) can be expressed as Cartesian products of two one-dimensionaldecompositions, as explained in more detail below. In all three domains the data aredistributed across a (logical) Nx � Ny processor grid. In the next section we describethe data decomposition in each domain, giving a speci�c example for the T10 casedecomposed onto a 4� 4 processor grid.3.1. Decomposition of the Physical Domain. The physical domain of theproblem is two-dimensional, with longitude being one dimension, and latitude the other.Longitude and latitude are discretized to form an I � J grid. In the evaluation of thespectral coe�cients, FFTs are performed over the longitude direction, and integration(i.e., weighted summation) is performed over the latitude direction. Since there is nocoupling between di�erent data points in either the physical or spectral domain, thedata partitioning can be optimized in the longitude direction for the evaluation of theFFTs, and in the latitude direction for the integration.In the FFT algorithm data items interact in a pairwise fashion, and the arrayindices of each interacting pair of data items di�er in exactly one bit. For this reason, onhypercube multiprocessors non-local communication in the concurrent FFT algorithmis minimized if the input data are decomposed in \natural" order. Thus, in the physicaldomain a linear partitioning is used in the longitude direction, and the assignmentfunction in the longitude direction is the identity function.A linear partitioning could also be used in the latitude direction, but it is compu-tationally more e�cient to process the corresponding latitude lines in the north and

PARALLELIZING THE SPECTRAL TRANSFORM METHOD. PART II 5south hemispheres in pairs. Thus, if i = J=Ny is the number of latitudes per processor,and we de�ne bi(j) = i � $ ji=2%+ j mod (i=2)(7)then in the physical domain the partitioning function in the latitude direction is,�(j) = (bi(j) if j < I=4I � 1� bi(j) if j � I=4(8)The kmin and kmax in Eqs. (3) and (4) are chosen so that, as nearly as possible, eachprocessor contains the same number of data points.A ring algorithm is used to perform the integration over latitude, and a Gray codeassignment function is used in this direction, since this ensures that neighbors in thering are directly connected by a communication channel. It should be noted that thisassignment function is appropriate only for a hypercube topology. For a mesh topology,for example, the identity function should be used in both the longitude and latitudedirections.The partitioning of the longitude-latitude grid in the physical domain can be ex-pressed as the Cartesian product of the one dimensional partitionings in each direction.Thus, each subset of the data is labeled by two indices, (i; j). The assignment functioncan be written as,A(i; j) = i+G(j) �Nx; (i = 0; 1; : : : ; Nx � 1; j = 0; 1; : : : ; Ny � 1)(9)where G(j) denotes the binary-re
ected Gray code of j (see Eq. (6)). Note that hereit has been assumed that blocks of contiguous bits in the binary representation of theprocessor number have been assigned to each dimension. That is, the least signi�cantlog2Nx bits of the processor number correspond to the longitude dimension, and themost signi�cant log2Ny bits to the latitude dimension. In general, the partitioning ofbits over dimensions can be done in any unique way.3.2. Decomposition of the Fourier Domain. The Fourier domain can be re-garded as a wavenumber-latitude grid, so like the physical domain, the Fourier domainis two-dimensional. However, a di�erent decomposition is used. The di�erences arisebecause of the way in which the FFT algorithm permutes the ordering of the outputFourier coe�cients. The one-dimensional FFT produces Fourier coe�cients in \bit-reversed" order. That is, if the number of data points to be transformed is I = 2k,then the array index of the mth Fourier coe�cient is given by the k bits of m writ-ten in reverse order. Denoting this quantity by Bk(m) then, for example, B4(12) = 3since if the 4 bits in the binary representation of 12 are written in reverse order weget 0011, the decimal representation of which is 3. A second factor also in
uences thepartitioning in the Fourier domain. As described in Section 4.1, a version of the FFTalgorithm designed for transforming real functions is used. Having performed the FFTon the half-length complex array, the Fourier coe�cients of the original real data are

6 DAVID W. WALKER, PATRICK H. WORLEY, AND JOHN B. DRAKEfound by combining data for indices m and I=2 � m. In general, communication isneeded to bring these points into the same processor. This is done by reordering thedata so that data points to be combined di�er by 1 in their array indices. Thus, in theFourier domain the partitioning function, �(�), in the wavenumber direction includesthe combined e�ects of bit reversal and the reordering needed to extract the Fouriercoe�cients, and is given by,�(j) = (Bk(j) if j � I=4Bk(3I=4 � j) if j > I=4(10)The partitioning function in the latitude direction is the same as in the physical domain.The assignment function in the Fourier domain also di�ers from that in the physicaldomain. The di�erence arises because of the way that data are communicated in theouter loop of the FFT algorithm, which is explained in more detail in Section 4.2. Inthe Fourier domain the ith set of data in the wavenumber direction is assigned to theprocessor obtained by cyclically shifting the d bits of the processor number one bitto the right (where the number of processors is 2d). Denoting this quantity by Rd(i)then, for example, R3(1) = 4, since if the 3 bits, 001, of the binary representation of1 are cyclically shifted one bit to the right we get 100, the decimal representation ofwhich is 4. A binary-re
ected Gray code assignment function is still used in the latitudedirection, so in the Fourier domain the assignment function isA(i; j) = Rdx(i) +G(j) �Nx; (i = 0; 1; : : : ; Nx � 1; j = 0; 1; : : : ; Ny � 1)(11)where dx = log2Nx.3.3. Decomposition of the Spectral Domain. In decomposing the spectralcoe�cients, �mn , a two-dimensional processor grid is again used. In the Fourier domain,the ith subset of wavenumbers is assigned to column number Rdx(i) in the processorgrid. A similar partitioning over wavenumber is used in the spectral domain. However,wavenumbers for which m > M are not used, so in the spectral domain we have thefollowing partitioning over wavenumber;Si = f j : j 2 Z+ & kmin(i) � �(j) < kmax(i) & 0 � j �M g(12)Each column of the processor grid contains Ny processors, and column numberRdx(i) is responsible for the spectral coe�cients �mn , where m 2 Si and n = m;m +1; : : : ;M . Within each column of processors these coe�cients can be ordered as a lineararray by running �rst over n and then over m. This array is then divided into subsetsusing a linear partitioning, and is assigned to the processors in the column using abinary-re
ected Gray code assignment function. It should be noted that, since thenumber of spectral coe�cients assigned to each column of processors will di�er slightly,the partitioning of the spectral coe�cients cannot be expressed as the Cartesian productof two one-dimensional partitionings. Some degree of load imbalance will also arise fromthis partitioning, and this topic is discussed in Section 5.3.

PARALLELIZING THE SPECTRAL TRANSFORM METHOD. PART II 7
0 1 2 3

4 5 6 7

12 13 14 15

8 9 10 11

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

longitude index

latitude
index

(a) PHYSICAL DOMAIN

0 2 1 3

4 6 5 7

12 14 13 15

8 10 9 11

0 8 4 12 2 14 6 10 1 15 5 11 3 13 7 9

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

wavenumber index

latitude
index

(b) FOURIER DOMAINFigure 1. The decomposition of (a)the physical, and (b) the Fourier do-mains over a 4�4 grid of processors.The assignment of processors to datasubblocks is appropriate for a hyper-cube topology. Each small cell repre-sents a data item. The thicker linesshow the boundaries between proces-sors. The numbered circles show theprocessor numbers.3.4. Data Decomposition for an Example Problem. To demonstrate howthe physical, Fourier, and spectral domains are decomposed for a speci�c problem, weconsider the T10 case for a 4� 4 processor grid. The T10 case does not have su�cientresolution to be of practical interest, however, it is useful for illustrative purposes. Forthe T10 problem there are 32 data points in the longitude direction and 16 data pointsin the latitude direction.We �rst consider the decomposition of the physical domain. A linear partitioningfunction is applied in the longitude direction leaving the ordering of the longitude indicesunchanged. In the latitude direction the partitioning function given in Eq. (8) is used inorder to pair up corresponding latitude lines in the north and south hemispheres. Sincethere are 4 processors in each direction, each processor is responsible for a subblockof 8 � 4 data points. This is shown in Figure 1(a), in which the thicker lines show

8 DAVID W. WALKER, PATRICK H. WORLEY, AND JOHN B. DRAKEthe divisions between processors, and each small cell represents one data point. Theassignment given in Eq. (9) is used to uniquely associate each data subblock with aprocessor. A linear assignment function is applied in the longitude direction, whilein the latitude direction a Gray code assignment function is used. This assignmentis shown in Figure 1(a) by the numbered circles, which indicate the number of theprocessor assigned to each data subblock.Since we evaluate the Fourier coe�cients of real functions in the longitude direction,only the coe�cients, �m, for m = 0; 1; : : : ; I=2, need be explicitly stored. Also, theimaginary parts of �0 and �I=2 are identically zero, so the real part of �I=2 can be storedas the imaginary part of �0. The Fourier domain, therefore, is only half the size ofthe physical domain, as shown in Figure 1(b), with each processor containing a 4 � 4subblock of Fourier coe�cients. However, since the Fourier coe�cients are complexnumbers the total storage required for a real function and its Fourier coe�cients is thesame, and the transform can be done in-place. In performing the FFTs the orderingof the latitude indices is unchanged. However, the order of the wavenumber indexis scrambled according to the partitioning function given in Eq. (10). This functionpermutes the indices into bit-reversed order, and then reorders them so that indices mand I=2�m are adjacent. Thus, in Figure 1(b), the wavenumber indices are arrangedin successive pairs, each of which sums to 16. The �rst two wavenumber indices, 0and I=4, are exceptions since no communication of data is necessary to extract thecorresponding Fourier coe�cients. The assignment of data subblocks to processors is asprescribed in Eq. (11), that is, the ith subblock in the wavenumber direction is assignedto column Rdx(i) of the processor grid, and the jth subblock in the latitude directionis assigned to row G(j) of the processor grid.The decomposition of the spectral domain is illustrated in Figure 2. It should berecalled that the spectral transform is truncated at m = M , and that for a particularvalue of m the index n runs from m to M . In this example M = 10, so wavenumberindices 11, 12, 13, 14, 15, and 16 are discarded. This is shown in Figure 2(a) byempty columns. The shaded columns in Figure 2(a) represent the spectral coe�cientsincluded in the spectral transforms. Thus, for example, the �rst column represents thecoe�cients �00 ; �01; : : : ; �010. The decomposition over wavenumber index is the same as inFourier space, and determines which column of the processor grid �mn lies in for �xedm. Figure 2(a) only shows which spectral coe�cients are to be included in the decom-position of the spectral domain. The actual decomposition is shown in Figure 2(b). Ineach column of processors the spectral coe�cients to be used are arranged as a singlearray by running �rst over the n index, and then over the m index. This is shown, forexample, in the �rst column of Figure 2(b). Here the �rst 11 shaded boxes represent�0n for n = 0; 1; : : : ; 10; the next 3 unshaded boxes represent �8n for n = 8; 9; 10; and thenext 7 shaded boxes represent �4n for n = 4; 5; : : : ; 10. The shading of boxes is chosen toclearly distinguish di�erent m values, and has no other signi�cance. Having produced,for each processor column, a one-dimensional array of spectral coe�cients, this array isdecomposed among the processors in each column using a linear partitioning function

PARALLELIZING THE SPECTRAL TRANSFORM METHOD. PART II 9Figure 2. The decomposition of the spec-tral domain over a 4�4 grid of processors.The shaded cells in �gure (a) representthe spectral coe�cients to be included inthe spectral transform, and how these aredecomposed over processor columns. Fig-ure (b) shows the actual decompositionwithin each processor column.
0 8 4 12 2 14 6 10 1 15 5 11 3 13 7 9

0

1

2

3

4

5

6

7

8

9

10

wavenumber index

n
index

0 1 2 3
Processor Column Number

(a)

0

4

12

8

0

2

6

14

10

1

1

5

13

9

2

3

7

15

11

3

(b)

and a Gray code assignment function. Thus, in Figure 2(b), processor 0 is assignedthe �rst 6 spectral coe�cients in the �rst column, and processors 4, 12, and 8 eachare assigned 5 spectral coe�cients. The decomposition of the spectral domain cannotbe expressed as the Cartesian product of two one-dimensional decompositions, ratherit should be regarded as a set of Nx one-dimensional decompositions, each over Nyprocessors. Figure 2(b) shows the load imbalance that arises from discarding spectralcoe�cients with m > M . Processor 0 has 6 coe�cients, while other processors such as10 and 11 have only 3 coe�cients. The impact of this imbalance will be discussed inSection 5.3.4. Algorithmic Details.4.1. The Sequential FFT Algorithm. The sequential, I-point, forward FFTalgorithm consists of k steps, where I = 2k. In each step, I=2 \butter
y" computationsare performed to update the data values in-place. Each butter
y takes two data itemswhose array indices di�er by exactly one bit, and uses them to compute two new valuesthat replace the values of the original two data items. At the end of the k steps theFourier coe�cients are obtained in bit-reversed order, and the computational complexity

10 DAVID W. WALKER, PATRICK H. WORLEY, AND JOHN B. DRAKEis O(I log I). The FFT algorithm, therefore, consists of an outer loop over k steps, andan inner loop over I=2 butter
y computations.The computational complexity can be reduced by a factor of two if we seek theFFT of a real function, rather than that of a complex function. The method followedwas that given in Numerical Recipes [7], which for completeness we shall now outline.Given the real array, fj for j = 0; 1; : : : ; I�1, to be transformed, we generate a complexarray, h, of length I=2, the real and imaginary values of which are the even and oddpoints in f , respectively. Thus,<(hj) = f2j; =(hj) = f2j+1; (j = 0; 1; : : : ; I=2� 1)(13)After performing a complex I=2-point FFT on the array h, to give the Fourier transform,H, the transform, F , of the original real function f can be extracted as follows;Fm = 12 �Hm +H�I=2�m�� i2 �Hm �H�I=2�m� e2�im=I (m = 0; 1; : : : ; I=2)(14)where x� denotes the complex conjugate of x, and i = p�1. Since F �I�m = Fm, ingeneral we need store only the spectrum form = 0 to m = I=2. For the spectral methodused in this work the spectrum is truncated at some value M satisfying I � 3M + 1,so the upper half of the spectrum is not needed in any case. To perform the inversetransform, the complex transform H can be recovered from Eq. (14), and an I=2-pointinverse FFT is performed on this array, leading directly to the real-valued array, f .4.2. The Parallel FFT Algorithm. The parallel FFT of 2k points on a d-dimensional hypercube has a d-step parallel phase, followed by a (k�d)-step sequentialphase [3,8]. The parallel phase is similar to the �rst d steps of the sequential algorithm,except that interprocessor communication is required to bring the pairs of data pointsupdated in each butter
y into the same processor. In addition, in both the parallel andsequential phases, the number of \local" butter
ies done per step in each processor isi=2, where i is the number of data items per processor.In the early parallel FFT algorithms (for example [4]), communication was per-formed within the inner loop of the algorithm. Thus, a message was sent in each passthrough the inner loop, each time incurring a communication latency cost. For earlyhypercubes, such as the Caltech/JPL Mark II hypercube, this latency cost was smallcompared with the total cost of sending a message, and so inner loop communication didnot degrade performance too much. However, for modern machines the overhead dueto latency for short messages can dominate the communication cost, and this precludesthe use of inner loop communication for most algorithms on machines like the InteliPSC/860 hypercube. We, therefore, move the communication in the parallel phase ofthe FFT to the outer loop. This reduces the communication latency by a factor ofabout i=2, and also reduces the communication volume by a factor of 2.In step r of the parallel phase of the algorithm (r = 0; 1; : : : ; d � 1), processor pswaps half of its data items with half of those in processor q, where q is the numberobtained by
ipping bit (d � r � 1) of p. Bits are numbered in order of increasing

PARALLELIZING THE SPECTRAL TRANSFORM METHOD. PART II 11signi�cance, starting from 0. If bit (d � r � 1) of processor p is 0 then p swaps itsupper i=2 data items with the lower i=2 data items of processor q; otherwise, p swapsits lower i=2 data items with the upper i=2 data items of q. This communication of datain the parallel phase can be expressed as a series of d bitwise exchanges in the binaryrepresentation of the global index. Swarztrauber [8] refers to these types of bitwisetransformation of the global index as i-cycles (see also [6]). The global index consistsof k bits. For a linear partitioning function the (k � d) least signi�cant bits give thelocal index within a particular processor, and if the assignment function is the identityfunction the d most signi�cant bits give the processor number. In step r of the parallelphase, bit (k � d � 1) of the global index, which is the most signi�cant bit of the localindex, and bit (k � r � 1) are swapped. After the d steps of the parallel phase theoriginal bits of the global index have been permuted as follows;Original bit order(k � 1; k � 2; : : : ; 1; 0)) Bit order after d steps(k � d � 1; k � 1; k � 2; : : : ; k � d; k � d� 2; : : : ; 1; 0)Now one more communication step exchanging bits (k � 1) and (k � d � 1) results inthe following ordering,(k � d; k � 1; k � 2; : : : ; k � d+ 1; k � d � 1; : : : ; 1; 0)The (k � d) least signi�cant bits are now in their original order, indicating that theordering of data items within each processor has been left unchanged by the (d + 1)communications. The d most signi�cant bits, however, have been cyclically shifted onebit to the right. This means that the net e�ect of the communication is to place thedata that would otherwise be in processor p in processor Rd(p). Thus, the assignmentfunction has changed from the original identity function, A(i) = i, to A(i) = Rd(i).These changes occur in addition to the bit reversal produced by the FFT algorithm,which changes the partitioning function from �(j) = j to �(j) = Bk(j).Having performed the FFT on the complex array, H, it is still necessary to combinethe data items at array indices m and I=2�m for m = 0; 1; : : : ; I=4 in order to get theFFT of the original real array (see Eq. (14)). To do this the data to be combined needto be in the same processor, and this requires that the partitioning function be furthermodi�ed to the form given in Eq. (10).4.3. Integration over Latitude. Having evaluated the Fourier coe�cients, �mn (�j),along each latitude line, �j, the spectral coe�cients are found by summing over latitude,�mn = J�1Xj=0 �m(�j)Pmn (�j)wj = Ny�1Xi=0 0@Xj2Li �m(�j)Pmn (�j)wj1A = Ny�1Xi=0 Tmn (i)(15)where Li is the ith index subset in the partitioning over latitude. The partial sums,Tmn (i), can be evaluated within each processor with no communication. Thus, theevaluation of the spectral coe�cients, �mn , requires the summation of Ny partial sums.This summation is performed independently in each column of the processor grid usinga ring algorithm, and is described in detail in [11]. The ring algorithm proceeds in

12 DAVID W. WALKER, PATRICK H. WORLEY, AND JOHN B. DRAKENy � 1 steps. Initially each processor evaluates the partial sums, Tmn , for the spectralcoe�cients assigned to its neighbor in the decomposition of the spectral domain. In the�rst step of the ring algorithm each processor passes these partial sums one step aroundthe ring. Each processor receives a set of partial sums, and evaluates its contributionto each. The contributions are then added to the partial sums. After Ny � 1 such stepsall contributions have been summed, and the decomposition of the spectral coe�cientsis as described in Sections 3.3 and 3.4.5. Results and Discussion. We shall �rst describe the incremental steps takenin developing the concurrent code for solving the shallow water equations, and thenresults for the optimum implementation will be presented and discussed. In all casesthe code was compiled with release 1.1 of The Portland Group i860 Fortran compiler,with the default optimization level of 1.The process of implementing the shallow water equation code on the 128-nodeIntel iPSC/860 hypercube began with a sequential version suitable for executing on aUnix workstation. In the �rst phase of the concurrent implementation the data weredecomposed only over the y direction, which corresponds to latitude in the physical andFourier domains and to spectral coe�cient index in the spectral domain. The data werenot decomposed over the x direction (the latitude/wavenumber direction). This allowedthe original FFT routines in the sequential code to be used, and e�ort was focused onoptimizing the parallel summation over latitudes in Eq. (2). In the second phase of theimplementation, decomposition over both the y and x directions was investigated.5.1. Parallel Summation. Results for the parallel summation in Section 4.3 havebeen presented and discussed at length in [11], so we shall just summarize these resultshere. In [11] the problem domains were partitioned in only the y direction, so Nx = 1. Inthe physical and Fourier domains each processor is responsible for a set of latitude lines,as in Eq. (8). In the �rst attempt at parallelizing the code the spectral coe�cients wereduplicated in all processors. Each processor evaluated its contribution to each spectralcoe�cient, and these contributions were then summed over all processors. In this casethe inverse transform could be found locally since each processor holds all the spectralcoe�cients. This approach is simple to implement, requiring few changes to the originalsequential code. However, it was found to be unacceptable due to high communicationcosts, and the duplication of computation in the spectral domain. The duplication ofspectral coe�cients also wastes memory.The second approach also partitioned the spectral coe�cients, as described in Sec-tion 3. This eliminated most of the redundant computation, and also improved theconcurrent e�ciency of the summation phase of the spectral transform. This summa-tion was performed using a ring pipeline, as described in Section 5.4, and the applicationran e�ciently for problem sizes of interest on the 128-node Intel iPSC/860 hypercube.For the T340 problem running on 128 nodes a speed of 340 M
ops was achieved.5.2. Parallel FFTs. Decomposing the data over just the y direction limits thenumber of processors that can be brought to bear on the solution of the shallow waterequations, and hence the extent to which the problem's inherent parallelism can be ex-

PARALLELIZING THE SPECTRAL TRANSFORM METHOD. PART II 13ploited. In order to make e�ective use of the computational power of massively parallelMIMD computers, containing hundreds or thousands of processors, it is necessary todecompose data domains in the x direction as well as the y direction. In the shallowwater equation code Fourier transforms are performed in the longitude direction, and sodecomposition in this direction requires the development of a parallel FFT algorithm.The basic structure of the parallel FFT algorithm has already been described inSection 4.2, and will be referred to as version 1. However, some tuning was required toget acceptable performance. The tuning concentrated on the following three areas:1. replacing the evaluation of the complex exponentials in the butter
y calcula-tions by a lookup table,2. reducing communication latency by reducing the number of messages sent, and3. masking communication costs by overlapping communication and calculation.We refer to the code produced by replacing the evaluation of the complex exponentialsby a lookup table as version 2. As shown in Table 1, version 2 runs signi�cantly fasterthan version 1. For the T85 case with Nx � Ny = 1 � 32 (i.e., for sequential FFTs)the performance improved by a factor of 4. It is important to note that althoughthe concurrent e�ciency of version 1 is larger than that of version 2, its performanceis poorer { judging an algorithm on the basis of e�ciencies can be misleading. Thee�ciency is useful in gauging the scalability of an algorithm, but by itself cannot beused to determine the best algorithm on a given concurrent machine. The memoryrequirements for the lookup tables for the forward FFT are O(i), while for the inverseFFT they are O(i logNx), where i is the length of the FFT, I, divided by the numberof processors, Nx. If only a single FFT needs to be computed the lookup tables mayconsume a relatively large amount of memory. However, in the shallow water equationcode each processor, in general, evaluates several FFTs, thereby amortizing the memorycost.The next step in tuning the parallel algorithm involved attempting to modify ver-sion 2 to reduce communication latency, and to overlap communication and calculation.As noted byWalker [9], if the communication is performed in the outer loop the butter
ycalculations in a single FFT cannot be overlapped with communication. The evalua-tion of the complex exponentials can be overlapped with communication, but since weare using a lookup table this is not an option. We could put the communication backinside the inner loop, which does permit the butter
y calculation to be overlapped withcommunication. This may be a good approach on some machines, however, for theIntel iPSC/860 any gains from overlapping communication and calculation would beswamped by the higher latency overhead.Fortunately the shallow water equation code contains another outer loop that wehave so far ignored. Namely, the loop over the latitudes in each processor. By makingthe loop over latitude the inner loop (rather than the outer loop) we can perform thecommunication necessary at a given step of the FFT for all latitudes at the same time.This approach requires data to be packed into and unpacked out of communicationbu�ers, and the communication bu�ers require memory of order the size of the originaldata, however the communication latency is reduced by a further factor of nlat, the

14 DAVID W. WALKER, PATRICK H. WORLEY, AND JOHN B. DRAKEnumber of latitude lines per processor. Essentially, changing the order of the loopsallows us to push the communication to an outer level of the loop hierarchy, and thatis why latency is reduced.Since the FFTs over di�erent latitude lines are independent we can now also overlapcommunication and calculation. This is done by dividing the latitude lines in eachprocessor into two equally-sized sets. While the calculations for the �rst set are beingperformed the communication for the second set is done, and vice versa. We refer tothe code that incorporates these modi�cations as version 3.In Table 1, we present results for the T85 case for versions 1, 2 and 3 on up to128 nodes of the Intel iPSC/860 hypercube. Version 3, in which latency is lowestand communication is overlapped with computation, is clearly the best algorithm. Inversion 2, decomposing over the x-direction for a �xed number of processors alwaysresults in poorer performance. However, in version 3 the performance at �rst improvesas Nx increases, and then falls o� when it is increased further, as shown in Figure 3.This behavior arises because as Nx increases the time to do the FFTs also increasesdue to the higher concurrent overhead. However, for a �xed number of processors anincrease in Nx reduces Ny, so the concurrent summation described in Section 4.3 willbe performed more e�ciently. An increase in Nx also increases the load imbalance inthe summation phase. The net e�ect of these con
icting trends is to produce a shallowminimum in the plot of processing time versus Nx. However, if the grain size in bothdirections is large enough, then both the FFT and summation phases will be computede�ciently, and load imbalance will result in a monotonic rise in the processing time asNx increases, as may be seen in some of the entries in Table 2 (for example, T85 on upto 16 processors).Having determined that version 3 gives reasonably good performance, we then wenton to use version 3 for problem sizes T21, T42, T85, T169, and T340, for processor gridswith di�erent sizes and shapes. The results are presented in Table 2.Figure 4 illustrates how the shape of the processor mesh a�ects performance. InFigure 4 the time for 10 time steps of the T85 case is plotted as a function of thetotal number of processors for a purely latitudinal decomposition (Nx = 1), a purelylongitudinal decomposition (Ny = 1), and for the mixed decomposition that gives thebest performance. Both Figures 3 and 4 show how a mixed decomposition results inbetter performance, particularly for smaller grain sizes. Figure 4 also shows that fora mixed decomposition 128 processors can be used, whereas for a purely longitudinal(latitudinal) decomposition only up to 64 processors can be used due to an insu�cientnumber of longitude (latitude) points. Thus, the mixed decomposition allows moreparallelism to be exploited.In Figure 5 the parallel e�ciency of the shallow water equation code is shown for anumber of problem sizes as a function of the number of processors. The results shownare for the best mixed decomposition case, except in the T340 case where memoryconstraints precluded a more complete investigation. Figure 5 shows that for the largerproblem sizes of interest (T85, T169, T340) good parallel e�ciency is achieved. Theresults indicate that for the T169 and T340 cases high e�ciency would be achieved on

PARALLELIZING THE SPECTRAL TRANSFORM METHOD. PART II 15
T85 timings for 10 time steps (seconds)Nx �Ny Version 1 Version 2 Version 31 � 32 7.98 2.05 2.022 � 16 8.14 2.39 1.824 � 8 9.70 4.21 1.788 � 4 8.88 3.55 1.8516 � 2 12.18 6.39 2.0532 � 1 20.12 12.69 2.321 � 64 4.43 1.43 1.592 � 32 4.29 1.43 1.304 � 16 4.96 2.22 1.188 � 8 4.52 1.84 1.1716 � 4 6.15 3.23 1.2532 � 2 10.09 6.33 1.3864 � 1 19.01 13.32 1.701 � 128 Too few latitudes2 � 64 2.50 1.05 1.034 � 32 2.66 1.29 0.888 � 16 2.35 1.02 0.8016 � 8 3.12 1.67 0.8132 � 4 5.08 3.20 0.8764 � 2 9.53 6.68 1.04128 � 1 Too few longitudesTable 1. Timings for the T85 case on 32, 64, and 128 nodes of the Intel iPSC/860hypercube. The three versions are discussed in the text.

16 DAVID W. WALKER, PATRICK H. WORLEY, AND JOHN B. DRAKEVersion 3 timings for 10 time steps (seconds)Nx �Ny T21 T42 T85 T169 T3401 � 1 1.13 6.21 40.83 nem* nem1 � 2 0.61 3.06 20.43 nem nem2 � 1 0.81 3.72 22.55 nem nem1 � 4 0.36 1.62 10.41 nem nem2 � 2 0.48 1.91 11.42 nem nem4 � 1 0.61 2.12 12.10 nem nem1 � 8 0.24 0.94 5.43 30.39 nem2 � 4 0.33 1.05 5.86 31.25 nem4 � 2 0.44 1.17 6.19 nem nem8 � 1 0.51 1.34 6.66 nem nem1 � 16 0.21 0.61 3.10 16.15 nem2 � 8 0.28 0.64 3.14 15.94 nem4 � 4 0.37 0.71 3.25 16.42 nem8 � 2 0.42 0.80 3.48 nem nem16 � 1 0.49 0.92 3.90 nem nem1 � 32 laty 0.55 2.02 9.14 nem2 � 16 0.22 0.52 1.82 8.75 nem4 � 8 0.24 0.57 1.78 8.66 nem8 � 4 0.26 0.61 1.85 8.78 nem16 � 2 0.30 0.69 2.05 nem nem32 � 1 lonz 0.82 2.32 nem nem1 � 64 lat lat 1.59 5.95 31.222 � 32 lat 0.45 1.30 5.02 nem4 � 16 0.25 0.45 1.18 4.70 nem8 � 8 0.25 0.46 1.17 4.68 nem16 � 4 0.27 0.50 1.25 4.92 nem32 � 2 lon 0.58 1.38 nem nem64 � 1 lon lon 1.70 nem nem1 � 128 lat lat lat 4.52 20.202 � 64 lat lat 1.03 3.33 16.204 � 32 lat 0.38 0.88 2.79 nem8 � 16 0.27 0.33 0.80 2.62 nem16 � 8 0.27 0.33 0.81 2.68 nem32 � 4 lon 0.36 0.87 2.84 nem64 � 2 lon lon 1.04 nem nem128 � 1 lon lon lon nem nemyNot enough latitudes. zNot enough longitudes. *Not Enough MemoryTable 2. Timings for the version 3 code on up to 128 nodes of the Intel iPSC/860hypercube for a range of problem sizes.

PARALLELIZING THE SPECTRAL TRANSFORM METHOD. PART II 17
0 1 2 3 4 5 6 7

0.0

0.5

1.0

1.5

2.0

2.5

Np = 128

Np = 64

Np = 32

Log2 Nx

T
im

e
fo

r
10

 s
te

ps
 (

se
co

nd
s)

Figure 3. Performance of the T85 case as a function of the shape of the processor mesh.larger machines, provided the characteristics of the communication system were at leastas good as those of the machine used here. In particular, we expect the T169 and T340cases to run e�ciently on the 528-processor Intel Delta system.5.3. Load Imbalance. The maximum number of spectral coe�cients assigned toany column of processors is given byLmax = (R + 1)�M + 1 � NxR2 �(16)where R = b(M + 1)=Nxc. Since the same amount of work is done on each spectralcoe�cient, the load imbalance, `s, in the spectral domain (de�ned as the maximumexcess computational load in any processor divided by the average load) is`s = 2NpdLmax=Nye(M + 1)(M + 2) � 1(17)where Np = NxNy is the total number of processors. In Figure 6 we plot the loadimbalance, `s, as a function of the number of processors for a range of problem sizesfor the case Ny = 1. For the Ny = 1 case, the load imbalance is maximized for a givennumber of processors. As may be deduced from Figure 6, the load imbalance is lessthan 20% provided there are at least 16 longitude points per processor. Of course, theoverall impact of this load imbalance on the performance of the application depends on

18 DAVID W. WALKER, PATRICK H. WORLEY, AND JOHN B. DRAKE
0 1 2 3 4 5 6 7 8

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Ny = 1
Nx = 1

mixed

Log2 Np

L
og

 ti
m

e
fo

r
10

 s
te

ps
 (

se
co

nd
s)

Figure 4. Performance of the T85 case as a function of the number of processors for purelatitudinal and longitudinal decompositions, and for the best mixed decomposition.the relative amounts of computation performed in the physical, Fourier, and spectraldomains.5.4. Masking Communication Overhead. Our results have shown the impor-tance of reducing communication overhead on concurrent multiprocessors, such as theIntel iPSC/860 hypercube, by overlapping communication and calculation. We, there-fore, devote this subsection to a more general discussion of how communication andcalculation can be overlapped in loosely synchronous parallel algorithms. The use ofthese techniques is illustrated with examples from our parallel implementation of theshallow water equations code, SSWMSB.Loosely synchronous algorithms are characterized by a series of compute-communicatecycles in which the communication phase imposes a degree of synchronization on theprocessors [3]. In the computational phase between communications the processors canrun completely asynchronously. Each cycle can be labeled by a global counter. Typ-ically a cycle begins with each processor receiving data from one or more processors.The processors then independently perform some computation using the data received,and send the results to some set of processors for use in the next cycle. We shall referto the work done by a single processor in a cycle as a subtask , and the process of trans-forming some initial data through a series of subtasks to produce some desired outputwill be referred to as a task . In general the compute phase of a subtask can be divided

PARALLELIZING THE SPECTRAL TRANSFORM METHOD. PART II 19
0 1 2 3 4 5 6 7 8

0.0

0.2

0.4

0.6

0.8

1.0

T21

T42

T85

T169

Log2 Np

Pa
ra

lle
l e

ff
ic

ie
nc

y

Figure 5. Parallel e�ciency of the shallow water equation code for the best mixeddecomposition as a function of number of processors for a number of problem resolutions.In the T21 case grain size constraints did not permit the best decomposition to beunambiguously determined for runs on 32 and 64 processors. In the T169 case memoryconstraints prevented a timing run on one node being done. The parallel e�ciencies inthese cases are, therefore, derived from an estimated one-processor runtime based onan empirical model.into a critical phase in which the computation depends on data from the preceding sub-task(s), and a non-critical phase that is independent of the preceding subtask(s). Thee�ective use of concurrent computers characterized by high communication overhead,such as the Intel iPSC/860 hypercube used in this work, requires communication coststo be masked by overlapping communication and computation. Two approaches used inthis work are to overlap the communication phases of a task with (1) the computationphases of another task, and (2) the non-critical computation phases of the same task.A pipeline can be used to perform a set of independent tasks, the number of subtasksin each of which equals the number of processors. In a linear pipeline the processorsare arranged in a line, and the ith subtask for each task is assigned to the processor atposition i in the line. Each task is initiated in the processor at the beginning of the line,and the results are accumulated in the last processor, as shown in Figure 7(a). If allthe subtasks take approximately the same length of time the linear pipeline can providean e�cient means of exploiting parallelism, particularly when the inner loop(s) of the

20 DAVID W. WALKER, PATRICK H. WORLEY, AND JOHN B. DRAKE
0 1 2 3 4 5 6 7

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

T21

T42
T85

T169

T340

Log2 Np

L
oa

d
im

ba
la

nc
e

fo
r

N
y

=
 1

Figure 6. Load imbalance, `s, as a function of number of processors, Np, when Ny = 1.algorithm contain little inherent parallelism. This approach has been used, for example,in the solution of multiple tridiagonal systems arising in a plasma instability problem[2]. In many problems it is desirable to have the �nal results distributed evenly acrossthe processors. This can be achieved by using a ring pipeline, in which each processorin turn initializes a task. As shown in Figure 7(b), the tasks now terminate in di�erentprocessors. An advantage of the ring pipeline over the linear pipeline is that, if thenumber of tasks is exactly divisible by the number of processors, there is no pipelinestartup cost { all processors are kept busy. The advantage of the linear pipeline isthat the computation of one task can be performed while receiving data for the nexttask. In the ring pipeline only the non-critical computation of a task can be performedwhile receiving data needed for the critical computation phase of the same task. Thus,in general, a larger fraction of the computation is available for overlap in the linearpipeline.Whereas the tasks in a pipeline algorithm are independent, in a dimensional ex-change algorithm they overlap, and a subtask sends data to subtasks in di�erent tasks.Each task can be represented as a binary tree, with each node being a subtask. Thedimensional exchange algorithm overlaps these trees, as shown in Figure 7(c). On ahypercube multiprocessor a dimensional exchange algorithm involves exchanging dataover each communication channel in turn. The parallel phase of a FFT is an exampleof a dimensional exchange algorithm.

PARALLELIZING THE SPECTRAL TRANSFORM METHOD. PART II 21
P0

P1

P2

P3

T0 T1 T2 T3

P0

P1

P2

P3

P0

P1

P2

T0

T1

T2

T3

T0

+

T1

+

T2

+

T3

=

(a) Linear Pipeline (b) Ring Pipeline

(c) Dimensional Exchange Algorithm

Figure 7. Schematic representations of (a) a linear pipeline, (b) a ring pipeline, and(c) a dimensional exchange algorithm. In all cases 4 tasks are shown, and the shadedcircles represent subtasks. The degree of shading indicates how much of the task hasbeen completed at a given stage { a white circle designates a subtask in the �rst cycleof a task, and a black circle designates the end of the task. In (a) and (b), Pn standsfor the nth position in the pipeline. In (c), we show how the dimensional exchangealgorithm is made up of overlapping binary trees.In summing the contributions to the Legendre transform the non-critical phase isthe evaluation of the local contributions to a spectral coe�cient, referred to as Tmnin Eq. (15). The critical phase is simply the summation of the local contributionwith the running sum received from the preceding subtask. In the FFT algorithmthe critical phase is the evaluation of butter
y pairs, and the non-critical phase is thedetermination of the complex exponential in the \twiddle factor". The ratio of the timespent communicating between two subtasks and the time for a non-critical computationdetermines the extent to which communication and calculation can be overlapped. Inthe evaluation of the spectral coe�cients in Eq. (15) the time for the non-critical phaseis proportional to the number of latitudes per processor, and hence the amount ofoverlap (and the concurrent e�ciency) increases as the grain size increases in the latitudedirection. In the FFT algorithm a lookup table is used to �nd the twiddle factors,resulting in a short non-critical phase. Thus, there is little overlap of communicationand computation within a single FFT. If several FFTs need to be evaluated, as isthe case in the shallow water equation code, communication and calculation can beoverlapped. Taking the FFTs in pairs, the calculation in one step of one FFT canbe overlapped with the communication in the other FFT, and vice versa. Thus, the

22 DAVID W. WALKER, PATRICK H. WORLEY, AND JOHN B. DRAKEcommunication and calculation phases of the two FFTs are interleaved, and we refer tothis technique as task interleaving.Communication latency also often signi�cantly degrades concurrent performance,and should be minimized by sending as few messages as possible. This can be done,whenever possible, by exchanging the order of the loops over tasks and subtasks. Thus,if a code originally contains an outer loop over tasks and an inner loop over subtasks,it should be restructured so that the subtask loop is the outer loop and the task loop isthe inner loop. This reduces latency by moving communication from the inner loop tothe outer loop. For example, in performing the summation in the Legendre transforma single task is to �nd the spectral coe�cient, �mn , for some m and n. The subtaskscorrespond to the steps in the pipeline. Thus, latency is reduced if the inner loop isover spectral coe�cients, and the outer loop is over the steps in the pipeline. In thiscase, in each step of the pipeline, the running sum for a block of spectral coe�cients isupdated, rather than just for a single spectral coe�cient, and blocks of coe�cients arecommunicated. Similarly, in the evaluation of the FFTs, if a task is the evaluation of asingle FFT, and a subtask involves the computation of one set of butter
y evaluations ina processor, then latency can be reduced by making the loop over FFTs (i.e., latitudes)the inner loop. Now when we perform the interleaving, instead of taking single FFTsin pairs, we interleave two blocks of FFTs each containing half the number of latitudelines per processor.It should be noted that a dimensional exchange algorithm could also be used toperform the summation in the Legendre transform. This approach uses a version ofthe fold algorithm of Fox et al. [3]. The communication volume is the same in thefold algorithm and the corresponding pipeline algorithm. However, fold performs fewercommunication steps and hence incurs a lower latency cost. On the other hand, inthe fold algorithm less of the non-critical computation is available for overlap withcommunication since half of it must be done before the �rst communication phase. Theoptimum method for performing the summation is, therefore, machine-dependent, andfurther work is required to determine the best method on the Intel iPSC/860 hypercube,and similar machines. These issues will be pursued further in a subsequent paper.6. Summary and Conclusions. In the climate modeling community problemsizes of interest range from T85 to T340, corresponding to grid resolutions from about1.5 degrees to less than half a degree. For these types of problem the spectral methodcan be parallelized e�ciently on MIMD distributed memory computers with hundredsof processors. The Intel iPSC/860 hypercube used in this work only had 8 Mbytes ofmemory on each processor, and this prevented a thorough investigation of the T340case. Of the T340 runs that were performed, a 2 � 64 processor mesh gave the highestperformance of approximately 560 M
ops. If more memory had been available weexpect the performance would have been greater for less elongated processor meshes.This expectation is based on the results for T85 and T169 cases running on 128 nodes.It was found that in all cases of interest parallel performance is signi�cantly im-proved by decomposing over both coordinate directions, rather than over just one orthe other. Using a mixed decomposition resulted in performance improvements of up

PARALLELIZING THE SPECTRAL TRANSFORM METHOD. PART II 23to 42%. In addition, a mixed decomposition allowed more processors to be brought tobear on a given problem.The Intel iPSC/860 hypercube, and similar multiprocessors, have high communica-tion latency and throughput costs, and acceptable levels of performance are achievableonly if specialized programming techniques are used. In this work, we have empha-sized the importance of reducing latency by moving communication to the outermostloop possible. Another important factor is the need to overlap communication andcomputation. This can be done by identifying the non-critical part of each phase ofcomputation, and overlapping this with communication. The communication must beperformed using non-blocking reads and writes. Some additional bu�ers are required tomaintain data integrity, but we have found the cost of this extra memory to be smallin comparison with the bene�ts gained.In the FFT algorithm the time for the non-critical computation is very short com-pared with the communication time, so there is no opportunity to overlap communi-cation and computation in a single FFT. To achieve overlap we have introduced theconcept of task interleaving. By alternating the computation and communication phasesof a pair of independent tasks the critical computation of one task can be overlappedwith the communication in the other, and vice versa.If no attempt is made to reduce latency and overlap communication and compu-tation, many of the distributed memory multiprocessors currently available are onlycapable of running e�ciently on embarrassingly parallel problems. The techniques thathave been used in this work to reduce communication costs demonstrate that it is pos-sible to use this type of multiprocessor to e�ectively exploit parallelism in a much largerclass of applications.We intend to incorporate what we have learned from parallelizing the shallow waterequations code into the design of a parallel version of CCM2. This will require additionissues to be addressed. In particular, in CCM2 a semi-Lagrangian method will beapplied in the physical domain. This will result in load imbalance since the polar andequatorial regions must be processed in di�erent ways, and suggests that our methodof decomposing the problem domains may need to be modi�ed. The load imbalancein the radiative calculation must also be considered in developing an e�cient parallelcode. See [11] for a more thorough discussion of how this work can be applied whenparallelizing CCM2. REFERENCES[1] G. L. Browning, J. J. Hack, and P. N. Swarztrauber, A comparison of three numericalmethods for solving di�erential equations on the sphere, Monthly Weather Review, 117 (1989),pp. 1058{75.[2] B. A. Carreras, N. Dominguez, J. B. Drake, J. N. Leboeuf, L. A. Charlton, J. A.Holmes, D. K. Lee, V. E. Lynch, and L. Garcia, Plasma turbulence calculations onsupercomputers, Int. J. Supercomputer Applications, 4 (1990), pp. 97{110.[3] G. C. Fox, M. A. Johnson, G. A. Lyzenga, S. W. Otto, J. K. Salmon, and D. W.Walker, Solving Problems on Concurrent Processors, vol. 1, Prentice Hall, Englewood Cli�s,N.J., 1988.

24 DAVID W. WALKER, PATRICK H. WORLEY, AND JOHN B. DRAKE[4] P. D. Noerdlinger and D. W. Walker, Discrete Fourier transforms on the Mark II hyper-cube, Tech. Report 337, Caltech Concurrent Computation Project, 1986.[5] S. A. Orszag, Transform method for calculation of vector-coupled sums: application to thespectral form of the vorticity equation, J. Atmos. Sci., 27 (1970), pp. 890{895.[6] R. B. Pelz, Parallel compact FFTs for real sequences, SIAM J. Sci. Stat. Comput., (submitted1991).[7] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numericalrecipes: the art of scienti�c computing, Cambridge University Press, Cambridge, England,1986.[8] P. N. Swartztrauber, Multiprocessor FFTs, Parallel Comp., 5 (1987), pp. 197{210.[9] D. W. Walker, Portable programming within a message-passing model: the FFT as an example,in The third conference on hypercube concurrent computers and applications, G. C. Fox, ed.,ACM Press, 1988, pp. 1438{50.[10] D. L. Williamson, J. T. Kiehl, V. Ramanathan, R. E. Dickinson, and J. J. Hack,Description of NCAR community climate model (CCM1), Tech. Report 285, National Centerfor Atmospheric Research, June 1987.[11] P. H. Worley and J. B. Drake, Parallelizing the spectral transform method, Concurrency:Practice and Experience, 4 (1992), pp. 269{291.

