
PARALLEL COMPUTING (in press)DESIGN AND PERFORMANCE OF A SCALABLE PARALLELCOMMUNITY CLIMATE MODELJOHN DRAKE�, IAN FOSTERy, JOHN MICHALAKESy,BRIAN TOONENy, PATRICK WORLEY�Abstract. We describe the design of a parallel global atmospheric circulation model, PCCM2. Thisparallel model is functionally equivalent to the National Center for Atmospheric Research's CommunityClimate Model, CCM2, but is structured to exploit distributed memory multicomputers. PCCM2incorporates parallel spectral transform, semi-Lagrangian transport, and load balancing algorithms.We present detailed performance results on the IBM SP2 and Intel Paragon. These results provideinsights into the scalability of the individual parallel algorithms and of the parallel model as a whole.1. Introduction. Computer models of the atmospheric circulation are used bothto predict tomorrow's weather and to study the mechanisms of global climate change.Over the last several years, we have studied the numerical methods, algorithms, andprogramming techniques required to implement these models on so-called massivelyparallel processing (MPP) computers: that is, computers with hundreds or thousandsof processors. In the course of this study, we have developed new parallel algorithmsfor numerical methods used in atmospheric circulation models, and evaluated these andother parallel algorithms using both testbed codes and analytic performance models [8,10, 11, 29, 32]. We have also incorporated some of the more promising algorithmsinto a production parallel climate model called PCCM2 [6]. The latter developmenthas allowed us to validate performance results obtained using simpler testbed codes,and to investigate issues such as load balancing and parallel I/O. It has also made thecomputational capabilities of MPP computers available to scientists for global changestudies, providing the opportunity for increases in spatial resolution, incorporation ofimproved process models, and longer simulations.In this paper, we provide a comprehensive description of the design of PCCM2 anda detailed evaluation of its performance on two di�erent parallel computers, the IBMSP2 and Intel Paragon. We also touch upon aspects of the experimental studies usedto select the parallel algorithms used in PCCM2. However, these studies are not theprimary focus of the paper.PCCM2 is a scalable parallel implementation of the National Center for Atmo-spheric Research (NCAR)'s Community Climate Model version 2 (CCM2). CCM2 is acomprehensive, three-dimensional global atmospheric general circulation model for usein the analysis and prediction of global climate [15, 16]. It uses two di�erent numericalmethods to simulate the uid dynamics of the atmosphere. The spherical harmonic(spectral) transform method [7, 22] is used for the horizontal discretization of vortic-ity, divergence, temperature, and surface pressure; this method features regular, static,global data dependencies. A semi-Lagrangian transport scheme [31] is used for highlyaccurate advection of water vapor and an arbitrary number of other scalar �elds, such1 Oak Ridge National Laboratory, P.O. Box 2008, Bldg. 6012, Oak Ridge, TN 37831-6367.2 Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439.1



2 J. DRAKE, I. FOSTER, J. MICHALAKES, B. TOONEN, AND P. WORLEYas sulfate aerosols and chemical constituents; this scheme features irregular, dynamic,mostly local data dependencies. Neither method is straightforward to implement e�-ciently on a parallel computer.CCM2, like other weather and climate models, also performs numerous calculationsto simulate a wide range of atmospheric processes relating to clouds and radiationabsorption, moist convection, the planetary boundary layer, and the land surface. Theseprocesses share the common feature that they are coupled horizontally only through thedynamics. These processes, collectively termed \physics," have the important propertyof being independent for each vertical column of grid cells in the model. However, theyalso introduce signi�cant spatial and temporal variations in computational load, andit proves useful to incorporate load balancing algorithms that compensate for thesevariations.PCCM2 was the �rst spectral, semi-Lagrangian model developed for distributed-memorymulticomputers [6]. However, we are not the only group to have examined par-allel formulations of such models. At the European Center for Medium-range WeatherForecasts (ECMWF), Dent [4] and his colleagues have developed the Integrated Fore-cast System for both vector multiprocessors and distributed memory multiprocessors.Sela [25] has adapted the National Meteorological Center's spectral model for use on theCM5. Hammond et al. [17] have developed a data-parallel implementation of CCM2,and Hack et al. [16] have adapted a vector multiprocessor version of CCM2 to executeon small multicomputers. All these developments build on previous work on parallelalgorithms for atmospheric circulation models, as described in the papers referencedabove and in [1, 3, 14, 18, 19, 24].Space does not permit a description of the primitive equations used to model theuid dynamics of the atmosphere [30] or of CCM2. Instead, we proceed directly inSections 2 and 3 to a description of the spectral transform method and the techniquesused to parallelize it in PCCM2. In Sections 4 and 5, we describe the parallel semi-Lagrangian transport and load balancing algorithms used in PCCM2. In Sections 6and 7, we present our performance results and our conclusions, respectively.2. The Spectral Transform Algorithm. The spectral transform method isbased on a dual representation of the scalar �elds on a given vertical level in termsof a truncated series of spherical harmonic functions and the values on a rectangulargrid whose axes, in a climate model, represent longitude and latitude. State variablesin spectral space are represented by the coe�cients of an expansion in terms of complexexponentials and associated Legendre functions,�(�; �) = MXm=�M N(m)Xn=jmj �mn Pmn (�)ei�m�;(1)where Pmn (�) is the (normalized) associated Legendre function, i = p�1, � is thelongitude, and � = sin �, where � is the latitude. The spectral coe�cients are thendetermined by the equation�mn = Z 1�1 � 12� Z 2�0 �(�; �)e�i�m�d��Pmn (�)d� � Z 1�1 �m(�)Pmn (�)d�(2)



SCALABLE PARALLEL COMMUNITY CLIMATE MODEL 3since the spherical harmonics Pmn (�)ei�m� form an orthonormal basis for square inte-grable functions on the sphere. In the truncated expansion, M is the highest Fouriermode and N(m) is the highest degree of the associated Legendre function in the north-south representation. Since the physical quantities are real, ��mn is the complex conju-gate of �mn and only spectral coe�cients for nonnegative modes need to be calculated.To evaluate the spectral coe�cients numerically, a fast Fourier transform (FFT)is used to �nd �m(�) for any given �. The Legendre transform (LT) is approximatedusing a Gaussian quadrature rule. Denoting the Gauss points in [�1; 1] by �j and theGauss weights by wj, �mn = JXj=1 �m(�j)Pmn (�j)wj:(3)Here J is the number of Gauss points. (For simplicity, we will henceforth refer to (3)as the forward Legendre transform.) The point values are recovered from the spectralcoe�cients by computing �m(�) = N(m)Xn=jmj �mn Pmn (�)(4)for each m (which we will refer to as the inverse Legendre transform), followed by FFTsto calculate �(�; �).The physical space grid is rectangular with I grid lines evenly spaced along thelongitude axis and J grid lines along the latitude axis placed at the Gaussian quadraturepoints used in the forward LT. In this paper, we assume a triangular spectral truncation:N(m) = M and the (m;n) indices of the spectral coe�cients for a single vertical layerform a triangular grid. To allow exact, unaliased transforms of quadratic terms, weselect I to be the minimummultiple of two such that I � 3M +1, and set J = I=2 [22].The value of M can then be used to characterize the horizontal grid resolution, andwe use the term \TM" to denote a particular discretization. Thus with M = 42, wechoose I = 128 and J = 64 for T42 resolution.In summary, the spectral transform as used in climate models proceeds in twostages. First, the FFT is used to integrate information along each west-east line of alatitude/longitude grid, transforming physical space data to Fourier space. This stageentails a data dependency in the west-east dimension. Second, a LT is applied to eachwavenumber of the resulting latitude/wavenumber grid to integrate the results of theFFT in the north-south, or latitudinal, direction, transforming Fourier space data tospectral space [2]. This stage entails a data dependency in the north-south dimension.In the inverse transform, the order of these operations is reversed.3. PCCM2 Parallel Algorithms. We now introduce the parallel algorithmsused in PCCM2. This model is designed to execute on distributed memory multi-computers, in which processors, each with a local memory, work independently andexchange data via an interconnection network. Hence, our parallel algorithms mustspecify data distribution, computation distribution, and the communication required



4 J. DRAKE, I. FOSTER, J. MICHALAKES, B. TOONEN, AND P. WORLEYto move data from where it is located to where it is required. An important character-istic of the parallel algorithms incorporated in PCCM2 is that they compute bit-for-bitidentical results regardless of the number of processors applied to a problem. Thisuniformity is not straightforward to achieve, because of the lack of associativity inoating-point addition, but was obtained by modifying the sequential implementationof various summation operations to use the same tree-based summation algorithm asthe parallel code.We start our description of PCCM2 by examining the spectral transform, as thisdetermines in large part the data distributions used in other program components.3.1. Algorithmic Alternatives. The spectral transform is a composition of FFTand LT phases, and parallel FFT and LT algorithms are well understood (e.g., see [12,23, 26, 27]). Nevertheless, the design of parallel spectral transform algorithms is anontrivial problem, both because the matrices involved are typically much smaller thanin other situations (e.g., 64{1024 in each dimension, rather than tens of thousands) andbecause the FFT and LT phases interact in interesting ways on certain architectures.Spectral models such as CCM2 operate on data structures representing physical,Fourier, and spectral space variables. Each of these data structures can be thought of asa three-dimensional grid, with the vertical dimension being the third coordinate in eachcase. The other two coordinates are, in physical space, latitude and longitude; in Fourierspace, Fourier wavenumber and latitude; and in spectral space, wavenumber and degreeof associated Legendre polynomial (n). For maximum scalability, each of these threespaces must be decomposed over available processors. In principle, data structurescan be decomposed in all three dimensions. However, we restrict our attention totwo dimensional decompositions, as these provide adequate parallelism on hundreds orthousands of processors and simplify code development.A variety of di�erent decompositions, and hence parallel algorithms, are possiblein spectral atmospheric models [10, 11]. Physical space is best partitioned by latitudeand longitude, as a decomposition in the vertical dimension requires considerable com-munication in the physics component. However, Fourier and spectral space can bepartitioned in several di�erent ways. A latitude/wavenumber decomposition of Fourierspace requires communication within the FFT [8, 29]. Alternatively, a latitude/verticaldecomposition of Fourier space allows FFTs to proceed without communication, if atranspose operation is �rst used to transform physical space from a latitude/longitudeto a latitude/vertical decomposition. Similar alternatives exist for spectral space, withone decomposition requiring communication within the LT, and another avoiding thiscommunication by �rst performing a transpose of the spectral coe�cients. Anotherpossibility, described below, is to decompose spectral space in just one dimension, repli-cating it in the other. This reduces communication costs at the expense of a modestincrease in storage requirements.The di�erent FFT and LT algorithms just described can be combined in di�erentways, leading to a large number of possible parallel algorithms. Performance is alsoinuenced by the number of processors allocated to each decomposed dimension (thatis, the aspect ratio of the abstract processor mesh) and the protocols used to imple-



SCALABLE PARALLEL COMMUNITY CLIMATE MODEL 5ment the communication algorithms. We have obtained a detailed understanding ofthe relative performance of these di�erent algorithms by incorporating them in a so-phisticated testbed code called PSTSWM [10, 11, 33]. Extensive studies with this codehave allowed us to identify optimal algorithm choices, processor mesh aspect ratios,and communication protocols for di�erent problem sizes, computers, and numbers ofprocessors. As much as possible, these optimal choices are incorporated in PCCM2.Scaling arguments show that for large problem sizes and large numbers of proces-sors, transpose algorithms are the most e�cient, as they communicate the least data.(These algorithms are used in the ECMWF's Integrated Forecast System model, whichis designed to operate at T213 resolution using 31 vertical levels [4].) However, bothexperimental and analytic studies indicate that for the smaller problem sizes consideredin climate modeling, nontranspose algorithms are often competitive, particularly for theLT. 3.2. PCCM2 Data Decompositions. PCCM2 uses a latitude/longitude decom-position of physical space, a latitude/wavenumber decomposition of Fourier space, and aone-dimensional decomposition of spectral space. These choices are inuenced by bothperformance and software engineering concerns. Performance considerations determinethe spectral space decomposition: the one-dimensional decomposition permits the useof a nontranspose algorithm that is known to be more e�cient than a transpose-basedLT for many problem sizes of interest. Software engineering concerns determine thechoice of Fourier space decomposition. While a latitude/vertical decomposition wouldallow the use of more e�cient algorithms in some situations, it would signi�cantly com-plicate the conversion of CCM2 into a distributed-memory parallel code, and is subjectto signi�cant load balance problems when the number of vertical layers in the model issmall compared to the number of processors used to decompose the vertical dimension.Hence, we use a latitude/wavenumber decomposition, and support both a parallel FFTthat requires communication within the FFT, and a double-transpose FFT that avoidscommunication within the FFT at the cost of two transpose operations.We now provide a more detailed description of the PCCM2 domain decompositions.We view the multicomputer as a logical P �Q two-dimensional processor grid. In phys-ical space, the latitudinal dimension is partitioned into 2Q intervals, each containingJ=2Q consecutive latitudes (Gauss points) along the latitude axis. Each processor row isassigned two of these intervals, one from the northern hemisphere, and the reected lat-itudes in the southern hemisphere. This assignment allows symmetry of the associatedLegendre polynomials to be exploited in the LT. The assignment also restricts Q, thenumber of processor rows, to be no larger than J=2. The longitudinal dimension is par-titioned into P equal intervals, with each interval being assigned to a di�erent processorcolumn. The resulting \block" decomposition of the physical domain is illustrated inFigure 1 for a small example.The latitude-wavenumber decomposition used for Fourier space in PCCM2 whenusing the double transpose parallel FFT is illustrated in Figure 1. (A di�erent decom-position in used in the other parallel FFT [11].) The latitude dimension is partitionedas in the physical domain, while the wavenumber dimension is partitioned into P sets
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mmFig. 1. The decomposition of the (a) physical, (b) spectral, and (c) Fourier domains over a 4� 4grid of processors. For �gures (a) and (b), each small cell represents a data item. The thicker linesshow the boundaries between processors. The circles contain the processor coordinates. The shadedcells in �gure (c) represent the spectral coe�cients to be included in the spectral transform, and showshow these are decomposed over processor columns



SCALABLE PARALLEL COMMUNITY CLIMATE MODEL 7of wavenumbers, with each set being assigned to a di�erent processor column. As illus-trated in Figure 1, the ordering for the Fourier coe�cients di�ers from the ordering ofthe longitude dimension in physical space. As described below, this serves to balancethe distribution of spectral coe�cients.PCCM2 partitions spectral space in one dimension only (wavenumber), replicat-ing it in the other. The wavenumber dimension is distributed as in Fourier space:wavenumbers are reordered, partitioned into consecutive blocks, and assigned to pro-cessor columns. The spectral coe�cients associated with a given wavenumber are repli-cated across all processors in the processor column to which that wavenumber wasassigned. This replication reduces communication costs. Again, see Figure 1 for anexample decomposition.Note that in a triangular truncation, the number of spectral coe�cients associatedwith a given Fourier wavenumber decreases as the wavenumber increases. Withoutthe reordering of the wavenumbers generated by the parallel FFT, a noticeable loadimbalance would occur, as those processor columns associated with larger wavenumberswould have very few spectral coe�cients. The particular ordering used, which was �rstproposed by Barros and Kauranne [1], minimizes this imbalance.3.3. Parallel Fast Fourier Transform. The data decompositions used in PCCM2allow \physics" computations to proceed without communication within each verticalcolumn. However, communication is required for the FFT and LT. As noted above,communication for the FFT can be achieved in two di�erent ways. One approach is touse a conventional parallel FFT; we do not describe this here as the basic techniquesare described in [11].An alternative approach that is more e�cient in many cases uses matrix trans-pose operations to transform the physical space data passed to the FFT from a lati-tude/longitude decomposition to a latitude/vertical+�eld decomposition, partitioningthe �elds being transformed as well as the vertical layers. A second transpose is thenused to remap the Fourier coe�cients produced by the FFT from a latitude/vertical+�elddecomposition to the latitude/wavenumber decomposition employed in Fourier space.This alternative approach avoids the need for communication during the FFT itself, atthe cost of two transpose operations, but tends to avoid load balance problems that canarise in a latitude/vertical decomposition.In both cases, FFTs from di�erent latitudes are grouped to reduce the numberof communications. Hence, in the conventional parallel FFT each node sends logQmessages containing a total of D logQ data, where D is the amount of data to be trans-formed, while in the double-transpose approach each node sends about 2Q messagescontaining a total of about 2D data. Clearly the choice of algorithm depends on thevalues of D and Q and on the communication parameters of a particular computer.3.4. Parallel Legendre Transform. Communication is also required for the Leg-endre transform used to move between Fourier and spectral space. In PCCM2, this op-eration is achieved using a parallel vector sum algorithm; other algorithms are slightlymore e�cient in some cases [11, 32], but are harder to integrate into PCCM2.



8 J. DRAKE, I. FOSTER, J. MICHALAKES, B. TOONEN, AND P. WORLEYThe forward and inverse Legendre transforms are�mn = JXj=1 �m(�j)Pmn (�j)wjand �m(�j) = N(m)Xn=jmj �mn Pmn (�j)respectively. For the forward Legendre transform, each �mn depends only on data asso-ciated with the same wavenumber m, and so depends only on data assigned to a singleprocessor column. Each processor in that column can calculate independently its con-tribution to �mn , using data associated with the latitudes assigned to that processor. To�nish the calculation, these P contributions need to be summed, and the result needsto be broadcast to all P processors, since spectral coe�cients are duplicated within theprocessor column. To minimize communication costs, local contributions to all spectralcoe�cients are calculated �rst. A distributed vector sum algorithm, which adds the lo-cal contributions from each of the P processors, is then used to accumulate the spectralcoe�cients and broadcast the results within each processor column. This sum can becomputed in a number of ways; we support both a variant of the recursive halving algo-rithm [28], and a ring algorithm [11]. For the inverse transform, calculation of �m(�j)requires only spectral coe�cients associated with wavenumber m, all of which are lo-cal to every processor in the corresponding processor column. Thus, no interprocessorcommunication is required in the inverse transform.This parallel LT algorithm proves to be e�cient for moderate numbers of processors.It also leaves the vertical dimension undecomposed, which avoids the need for commu-nication in the vertical coupling in spectral space that is required by the semi-implicittimestepping algorithm. Finally, it is easily integrated into CCM2. (Other methods,such as the interleaved ring and transpose algorithms, require substantial restructur-ing [11, 32].) A disadvantage is that all computations within the spectral domain mustbe calculated redundantly within each processor column. However, since CCM2 per-forms relatively little work in the spectral domain, the redundant work has not provedto be signi�cant. A second disadvantage is that additional storage is required to holdthe duplicated spectral coe�cients. This e�ect is rendered less signi�cant by the factsthat spectral space variables are small and distributed memory multicomputers typi-cally have a lot of memory. In Section 6.3, we present data that enable us to evaluatethe impact of this structure on scalability.4. Semi-Lagrangian Transport. The semi-Lagrangian transport (SLT) methodused in CCM2 updates the value of the moisture �eld at a grid point (the arrival point,A) by �rst establishing a trajectory through which the particle arriving at A has movedduring the current timestep. From this trajectory the departure point, D, is calculated,and the moisture �eld is interpolated at D using shape preserving interpolation [31].



SCALABLE PARALLEL COMMUNITY CLIMATE MODEL 9PCCM2 uses a simple strategy to parallelize the SLT. Since the SLT occurs en-tirely in physical space, the associated calculations can be decomposed by using thelatitude/longitude decomposition used to parallelize the physics and spectral trans-form. Communication is then required whenever D and A are on di�erent processors.In order to minimize the number of messages generated, we extend local arrays on eachprocessor with \shadow" regions corresponding to grid points assigned to neighboringprocessors. Communication is performed to update these shadow regions prior to eachtimestep, after which calculations can proceed independently on each processor.This SLT implementation strategy works well everywhere except in polar regions,where CCM2's square latitude/longitude grid gives a small west/east grid spacing.Unfortunately, this small spacing can place departure points far away (in terms of gridpoints) from arrival points. In extreme cases, velocity vectors that cross the pole canresult in departure points that are I=2 grid points distant. This situation is not handledwell by the shadow region approach.This problem can be addressed in a number of ways. One partial solution, incor-porated into PCCM2, is to make the size of the overlap region a dynamically varyingquantity. At each step and in each latitude and vertical level, the size of the overlapneeded is determined from the departure points at the previous time step. Anotherapproach, motivated by other considerations but with advantages for the parallel SLT,is to modify CCM2 (and PCCM2) to use a \reduced grid" with fewer grid points perlatitude in polar regions and with polar points on a single processor. This approachhas proved successful in the IFS model [4], and is currently being investigated for usein CCM2 and PCCM2.5. Load Balancing. As noted in the introduction, load imbalances can arise inparallel climate models as a result of spatial and temporal variations in the computationrequirements of physics routines [20, 21]. For example, CCM2 performs radiation com-putations only for grid points that are in sunlight. This situation can be corrected byemploying load-balancing algorithms that, either statically or dynamically, map com-putation to processors in di�erent ways.A exible load-balancing library has been developed as part of the PCCM2 e�ort,suitable for use in PCCM2 and other similar climate models. This library has been in-corporated into PCCM2 and used to experiment with alternative load-balancing strate-gies [9]. One simple strategy swaps every second grid point with its partner 180 degreesapart in longitude during radiation calculations. This does a good job of balancing thediurnal cycle: because CCM2 pairs N/S latitudes, it ensures that each processor alwayshas approximately equal numbers of day and night points. However, it generates a largevolume of communication. Another strategy uses a dynamic data-distribution strategythat performs less communication but requires periodic reorganizations of model statedata. Currently, the former scheme gives better performance in most cases, and suc-ceeds in eliminating about 75 per cent of the ine�ciency attributable to load imbalanceswhen PCCM2 runs on 512 processors [9]. This scheme is incorporated in the productionPCCM2, and is used in the performance studies reported in the next section. Figure 2illustrates the impacts of load balancing.
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Fig. 2. Factor of improvement from load balancing on the Intel DELTA, as a function of number ofprocessors. Improvements are relative to a version of PCCM2 that does not incorporate load balancing,and are given for all of PCCM2 (\Total") and for just the physics component.6. Performance Studies. We performed a wide variety of experiments to mea-sure and characterize PCCM2 performance. As noted above, performance of spectraland semi-Lagrangian transport codes depends signi�cantly on the parallel algorithms,domain decomposition, and communication protocols used. The results presented hereuse the double transpose parallel FFT, distributed LT, and load balancing algorithmsdescribed in preceding sections. A square or almost square processor mesh was used inmost cases, as experiments indicated that these generally gave the best performance.Communication protocols are for the most part those identi�ed as e�cient in studieswith PSTSWM [10, 11, 33].6.1. Computers. Table 1 describes the two parallel computer systems on whichexperiments were performed: the Intel Paragon XP/S MP 150 and the IBM SP2. Thesesystems have similar architectures and programming models, but vary considerably intheir communication and computational capabilities. Our values for message startuptime (ts) and per-byte transfer time (tb) are based on the minimum observed times forswapping data between two nodes using our communication routines, which incorporateextra subroutine call overhead and communication logic relative to low-level libraries.Hence, they represent achievable, although not necessarily typical, values. The linear(ts; tb) parameterization of communication costs is a good �t to observed data for theParagon but not for the SP2. The MBytes/second measure is bidirectional bandwidth:approximately twice 1=tb. The computational rate (Mop/sec) is the maximum ob-



SCALABLE PARALLEL COMMUNITY CLIMATE MODEL 11Table 1Parallel Computers Used in Empirical Studies, Characterized by Operating System Version, Mi-croprocessor, Interconnection Network, Maximum Machine Size Used in Experiments (N), MessageStartup Cost (ts), Per-Byte Transfer Cost (tb), and Achieved Per-Processor Mop/Sec at Single andDouble PrecisionName OS Processor Network NParagon SUNMOS 1.6.5 i860XP 16 � 64 mesh 1024SP2 AIX + MPL Power 2 multistage crossbar 128Name ts (�sec) tb (�sec) MB/sec MFlop/sec(swap) Single DoubleParagon 72 0.007 282 11.60 8.5SP2 70 0.044 45 44.86 53.8served by running the PSTSWM testbed code [33] on a single processor for a varietyof problem resolutions, and so is an achieved peak rate rather than a theoretical peakrate.N in Table 1 and the X axis for all �gures refer to the number of nodes, notthe number of processors. This distinction is important because the Paragon used inthese studies has three processors per node. In our experiments, one processor pernode was always used as a dedicated message coprocessor, a second processor wasused for computation, and the third processor was idle. (Some modi�cations to thesource code are required in order to exploit the additional compute processor on theParagon. These modi�cations are currently ongoing.) The Paragon measurements usedthe SUNMOS operating system developed at Sandia National Laboratories and theUniversity of New Mexico, which currently provides better communication performancethan the standard Intel OSF operating system. Interprocessor communication on theParagon was performed by using the SUNMOS native communication commands, andon the SP2 by using the MPL communication library.Table 1 gives single processor performance data at both single-precision (32-bitoating point values) and double precision (64-bit) arithmetic. Double precision is sig-ni�cantly slower on the 32-bit i860 processor and faster on the 64-bit Power 2 processor.Below, we give multiprocessor performance results for both single and double precision.We shall see that the SP2 generally performs better at single precision on multipleprocessors, no doubt because of reduced communication volume when sending 32-bitvalues.6.2. Performance Results. Figures 3{5 and Table 2 present PCCM2 perfor-mance at di�erent resolutions (T42 and T170, both with 18 vertical levels), on di�erentnumbers of nodes, and at both single and double precision. We show both executiontimes, expressed as elapsed seconds per model day, and sustained computational rate,expressed both as Gop/sec and as Mop/sec/node. Only a small number of datapoints are available at T170 resolution because of memory limitations. In all cases, ourmeasurements ignore initialization time, as this is not relevant to model performancefor long simulations. The computational rates are based on CCM2 operation counts



12 J. DRAKE, I. FOSTER, J. MICHALAKES, B. TOONEN, AND P. WORLEYTable 2Elapsed time per model day and computational rate at T170 resolution on the Paragon and SP2for single and double precisionName Nodes Time/model day Computational Rate(sec) Gop/sec Mop/sec/nodeDouble PrecisionParagon 512 1510 1.71 3.31024 814 3.18 3.1SP2 128 1092 2.27 18.5Single PrecisionParagon 1024 525.6 4.93 4.8SP2 64 1606 1.61 25.2128 1077 2.40 18.8
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Fig. 5. Computational rate in Mop/sec/node as a function of node count at T42 resolution onthe Paragon and SP2, for single and double precision.



14 J. DRAKE, I. FOSTER, J. MICHALAKES, B. TOONEN, AND P. WORLEYobtained using the hardware performance monitor on a Cray C90.Note that both the single (32 bit) and double (64 bit) precision results are ofinterest. For large problem resolutions, the increased accuracy of double precision maybe needed, and hence the double precision results are more meaningful. For smallerproblem sizes, single precision is generally considered to be su�cient, and hence in thiscase the single precision data are more signi�cant.These results permit several general conclusions regarding the performance of PCCM2on the Paragon and SP2. At T42 resolution, the model scales well on the SP2 up to 128nodes and on the Paragon up to 512 nodes. The 2.2 Gop/sec rate (double precision)achieved on the 128-node IBM SP2 and the 1024-node Paragon compares well withthat achieved on a Cray Y-MP/8 (1.2 Gop/sec) but is less than that achieved on aCray C90/16 (about 6 Gop/sec). The paucity of data at T170 prevents a completeanalysis, but available data indicate improved scalability on the Paragon. At T170(double precision) the Paragon computational rate increases to 3.2 Gop/sec on 1024nodes while the 128 node SP2 computational rate remains unchanged. This compareswith 5.3 Gop/sec on the C90/16.For T42, PCCM2 in single precision executes about 3.0 times faster on the SP2 thanon the Paragon with the same number of nodes. In double precision, the SP2 is about4.5 times faster than the Paragon. As Figure 5 makes clear, these results are primarilydue to the SP2's faster processors. Paragon performance can be improved somewhatby using the second compute processor. Preliminary experiments indicate that thismay improve single-node performance by around 30 percent, which on large numbersof processors might represent a 10 to 20 percent improvement in overall performance.We see that on both machines, execution rates are consistently higher at singleprecision than at double precision. However, on the SP2 the di�erence is small on largernumbers of nodes. These results can be explained as follows. On the Paragon, the useof double precision rather than single precision arithmetic increases both computationand communication time. On the SP2, double precision oating point computationis faster than single precision since the hardware does all computations in double andthen truncates to a single result. (Preliminary experiments suggest that PCCM2 singleprecision performance can be improved by about 10 percent by using a compiler ag thatprevents this truncation for intermediate results; however, the e�ect of this optimizationon reproducibility has not yet been determined.) So for the SP2, double precisionreduces computation costs (as the processor is faster at double precision) but increasescommunication costs (as the data volume increases).The per-node Mop/sec data presented in Figure 5 show that neither the i860 norPower 2 microprocessor achieves outstanding performance. (Their peak performancefor double precision computation is 75 and 256 Mop/sec, respectively.) The percentof peak performance achieved on a single processor depends on the way the programutilizes the cache for memory access and on the ability of the compiler to optimizememory access and computation. The PCCM2 code is structured so that vector op-erations can be easily recognized, but e�cient execution for cache based machines canrequire di�erent constructs. The development of program structuring techniques which



SCALABLE PARALLEL COMMUNITY CLIMATE MODEL 15are able to better exploit microprocessor-based MPPs must be an urgent topic of futureresearch. The per-node Mop/sec data are also inuenced by communication costs andload imbalances, both of which tend to increase relative to computation costs as thenumber of nodes increases.6.3. Additional Results. Table 3 shows how much time is spent in di�erentPCCM2 components, while Table 4 shows PCCM2 average message sizes. In each case,data is given for a range of problem sizes and node counts. For brevity, only results fromthe SP2 or the Paragon are given in each table, as indicated in the captions. Qualitativeresults for one platform are indicative of results for the other.The time breakdown information (Table 3) provides insights into the scalability ofdi�erent parts of the model. The table indicates how much time was spent in di�erentparts of the model, expressed both as absolute time per time step and as a percentageof total time. These data represent the average across time steps for each of a numberof regions. The table also indicates the aspect ratio chosen in each case: a term P �Qindicates that the latitude dimension is decomposed over P nodes and the longitudedimension is decomposed over Q nodes, or, equivalently, that P nodes are allocated toeach longitude and Q nodes to each latitude. The extreme aspect ratios chosen for someof the T170 runs are due to memory limitations. An error in PCCM2 (since corrected)meant that certain aspect ratios had exaggerated memory requirements.Indentation in Table 3 indicates subregions within a larger region. Hence, regionMain represents the entire model, and Scan1, SLT, Spectral, and Scan2 represent dis-joint subsets of the entire model.Region Scan1 includes physics, the forward FFTs, and part of the transform calcu-lations into spectral space (the remainder are in region \Spectral"). Subregion Physicsincludes all model physics plus the calculation of the non-linear terms in dynamics ten-dencies. Region SLT represents the semi-Lagrangian transport. Subregion Initializationcorresponds to the code that sets up the overlap regions.Region Spectral represents various computations performed in spectral space: Gaus-sian quadrature, completion of the semi-implicit time step, and horizontal di�usion cal-culations. Finally, region Scan2 represents the inverse transform from spectral space togrid space, and the �nal computation of global integrals of mass and moisture integralsfor the time step.An examination of how the distribution of time between di�erent regions changeswith the number of nodes (N) provides insights into the scalability of di�erent parallelalgorithms. The proportion of time spent in SLT increases signi�cantly with Q, in-dicating poor scalability. This is due to high communication requirements, as will beseen below. Spectral also increases when the number of nodes in the N/S direction (P )increases or when the model size increases, again because of increased communication.The proportion of time spent in Physics decreases with N , and the FFT regions in-crease only slightly, because their communication costs are relatively low. Notice thata smaller proportion of total time is spent in Physics at double precision than at singleprecision; this is because of the SP2's better double precision compute performance.Further insights in the scaling behavior of PCCM2 is provided by Table 4, which



16 J. DRAKE, I. FOSTER, J. MICHALAKES, B. TOONEN, AND P. WORLEYTable 3Total Time, and Percentage of Time, Spent in Di�erent Parts of PCCM2 on the SP2, for Di�erentProblem Sizes and Node Counts, and for both Single and Double Precision. Times are in Msec, andare for a Single Time Step T42 T170Region N=32 N=64 N=128 N=64 N=128Single Precision 8x4 8x8 16x8 32x2 16x8Main (Time in msec) 788.4 459.0 272.4 5575.8 3740.6Scan1 402.8 214.8 118.5 2206.9 1167.3Physics 361.9 187.6 100.8 1920.3 950.3Forward FFT 24.2 16.6 9.1 155.4 111.4SLT 261.0 175.4 101.7 1337.2 1323.3Initialization 150.3 107.2 66.5 302.2 740.7Spectral 44.3 24.3 27.1 1186.7 738.4Scan2 79.5 44.1 25.0 827.6 501.7Backward FFT 28.2 18.8 10.6 183.2 134.6Main (Percent of total) 100.0 100.0 100.0 100.0 100.0Scan1 51.1 46.8 43.5 39.6 31.2Physics 45.9 40.9 37.0 34.4 25.4Forward FFT 3.1 3.6 3.3 2.8 3.0SLT 33.1 38.2 37.3 24.0 35.4Initialization 19.1 23.4 24.4 5.4 19.8Spectral 5.6 5.3 9.9 21.3 19.7Scan2 10.1 9.6 9.2 14.8 13.4Backward FFT 3.6 4.1 3.9 3.3 3.6Double Precision 8x4 8x8 16x8 N/A 64x2Main (Time in msec) 920.1 482.5 283.3 4033.4Scan1 469.0 221.1 119.6 1085.6Physics 412.3 183.5 98.0 855.4Forward FFT 35.1 23.7 12.9 112.2SLT 307.1 178.5 103.6 1277.3Initialization 178.8 110.4 68.7 741.3Spectral 53.2 27.0 31.4 1139.3Scan2 90.1 55.6 28.4 511.2Backward FFT 42.6 27.8 14.5 129.9Main (Percent of total) 100.0 100.0 100.0 100.0Scan1 51.0 45.8 42.2 26.9Physics 44.8 38.0 34.6 21.2Forward FFT 3.8 4.9 4.6 2.8SLT 33.4 37.0 36.6 31.7Initialization 19.4 22.9 24.2 18.4Spectral 5.8 5.6 11.1 28.2Scan2 9.8 11.5 10.0 12.7Backward FFT 4.6 5.8 5.1 3.2



SCALABLE PARALLEL COMMUNITY CLIMATE MODEL 17Table 4Average Message Size in Bytes, and Average Number of Messages, for Di�erent Node Counts atT42 Resolution (Single Precision) on the Paragon NodesRegion 32 (8x4) 64 (8x8) 128 (16x8)Main 6295 113 2755 150 1762 161Scan1 9486 23 3445 37 1779 36Physics 7200 16 3600 16 3600 8SLT 3106 30 2044 33 1717 34Init 4137 22 2788 24 2480 23Spectral 5856 31 2928 31 2370 42Scan2 7494 28 2603 48 1264 49NodesRegion 256 (16x16) 512 (32x16) 1024 (32x32)Main 764 216 814 236 428 345Scan1 558 61 281 61 83 111Physics 1800 8 1800 4 900 4SLT 1221 37 2037 50 1622 59Init 1788 25 2781 36 2168 44Spectral 1421 35 1332 41 906 36Scan2 417 81 206 82 65 138gives the average message size and number of messages per time step, as a function ofthe number of nodes and problem size. (Note that the forward and backward FFT areincluded in Scan1 and Scan2, respectively.) These data are for the Paragon; on theSP2 the number of messages increases by 50 percent, because a two-message protocolis used that requires that each message exchange be preceded by a synchronizationmessage from one of the two nodes involved in the exchange to the other. The use ofthis two-message protocol is found to improve performance signi�cantly on the SP2.Table 4 explains some of the trends identi�ed in Table 3, and provides additionalinformation about what happens as the number of nodes increases beyond 128. Wesee that average message size drops rapidly in the FFTs, roughly halving each timethe number of nodes is doubled. A similar trend is visible in Physics; this correspondsto the communication performed for load balancing. In contrast, message sizes in theSLT stay fairly constant, and eventually completely dominate the total communicationvolume. Examining message counts, we see that the number of messages performed inthe FFTs increases with the number of nodes, and becomes a signi�cant contributorto communication costs on large number of nodes. This suggests that there may beadvantages to using either a distributed FFT or a O(logP ) transpose FFTs [11] whensolving small problems on large number of nodes.7. Summary. PCCM2 is a production climate model designed to execute on mas-sively parallel computer systems. It is functionally equivalent to the shared-memory



18 J. DRAKE, I. FOSTER, J. MICHALAKES, B. TOONEN, AND P. WORLEYparallel CCM2 model on which it is based, has successfully completed ten year simula-tions, and is ready for use in scienti�c studies.PCCM2 has been developed as part of a research project investigating parallel al-gorithms for atmospheric circulation models. The particular algorithms incorporatedin PCCM2 represent pragmatic tradeo�s between choices known from our research ef-forts to be optimal in di�erent environments, and the software engineering constraintsinvolved in adapting an existing vector code to obtain a robust, portable model. Per-formance studies indicate that the resulting code performs well on a range of di�erentparallel computers, problem sizes, and number of nodes. Overall performance is impres-sive, but would be signi�cantly better if uniprocessor performance could be improved.Parallel scalability on large numbers of nodes is limited by the high communicationrequirements of the parallel semi-Lagrangian transport algorithm.Current research and development e�orts are working both to improve PCCM2and to apply it to climate modeling problems. In two separate e�orts, PCCM2 is beingcoupled with ocean models to obtain an earth system model suitable for long durationclimate simulations. Work is also proceeding to develop a fully semi-Lagrangian, re-duced grid version. Another area of investigation is parallel I/O. Both the Paragon andSP2 versions of PCCM2 use parallel I/O techniques to achieve su�cient I/O bandwidthto the parallel �le systems. Asynchronous operations are used to allow the overlappingof model output with computation. In future work, we expect to generalize these tech-niques to use a common interface on both machines.Finally, we note that in our work to date, we have focused on the development ofexplicitly parallel codes in which parallel algorithms are speci�ed in terms of low-levelmessage-passing operations. We choose this approach both because it o�ers portabilityand performance on a range of parallel computers, and because it provides us theexibility required to investigate a wide range of algorithmic alternatives. Ultimately,we expect that the more e�cient algorithms identi�ed in this project may be speci�edby using more convenient notations.Acknowledgments. This work was supported by the CHAMMP program of theO�ce of Health and Environmental Research, Environmental Sciences Division, of theU.S. Department of Energy under Contract W-31-109-Eng-38 with the University ofChicago and under Contract DE-AC05-84OR21400 with Lockheed-Martin Energy Sys-tems. We are grateful to Ray Flanery, Jace Mogill, Ravi Nanjundiah, Dave Semeraro,Tim Sheehan, and David Walker for their work on various aspects of the parallel model.We also acknowledge our colleagues at NCAR for sharing codes and results throughoutthis project. We are grateful to Wu-Sun Cheng and David Soll for their help withperformance tuning on the IBM SP2.This research used the Intel Paragon multiprocessor system of the Oak Ridge Na-tional Laboratory Center for Computational Sciences (CCS), funded by the Departmentof Energy's Mathematical, Information, and Computational Sciences (MICS) Divisionof the O�ce of Computational and Technology Research; the Intel Paragon multipro-cessor system at Sandia National Laboratories; the Intel Touchstone DELTA Systemoperated by Caltech on behalf of the Concurrent Supercomputing Consortium; the IBM
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