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Abstract

The shallow water equations in a spherical geometry are solved us-
ing a 3-dimensional Cartesian method. Spatial discretization of the 2-
dimensional, horizontal differential operators is based on the Cartesian
form of the spherical harmonics and an icosahedral (spherical) grid. Com-
putational velocities are expressed in Cartesian coordinates so that a prob-
lem with a singularity at the pole is avoided. Solution of auxiliary elliptic
equations is also not necessary. A comparison is made between the stan-
dard form of the Cartesian equations and a rotational form using a stan-
dard set of test problems. Error measures and conservation properties of
the method are reported for the test problems.

1 Introduction

This report is one of a series of documents developing numerical methods for
global climate modeling. The work reported is sponsored by the CHAMMP
program of the Department of Energy’s Office of Health and Environmental
Research. CHAMMP is an acronym for Computer Hardware, Advanced Math-
ematics and Model Physics. Its goal is the development of advanced climate
models with considerably improved throughput, accuracy and realism.

The use of triangular meshes for the solution of PDE’s on a spherical domain
is attractive for several reasons. Triangles allow nearly uniform meshes while
rectangular meshes suffer the problem of varying resolution near the poles. Sec-
ondly, triangles require only a simple data structure for use with adaptive mesh
techniques or for meshes that resolve irregular features. Adapting a mesh to fit
a coastline is an obvious example.

Several early papers investigated the use of icosahedral- triangular meshes
[11, 12, 18, 19, 20, 21]. The barotropic vorticity equation and the shallow water
equations on the sphere served as the primary equation sets for testing the



numerical methods because of their relevance in atmospheric flow models. A
review article [22] gives further references of that early work.

More recently an icosahedral method based on the stream function and ve-
locity potential formulation of the shallow water equations with a control volume
discretization has been proposed by Masuda [8]. The method was refined and
tested on a standard set of cases [23] by Heikes and Randall in [4, 5]. Other
icosahedral methods have also been proposed in [2].

Renewed interest in these methods springs from advances in computing
and numerical analysis. The introduction of massively parallel computers has
prompted the reexamination of many classical algorithms. The granularity of
tasks that can be performed in parallel appears to be finer for the finite dif-
ference and finite element methods than for spectral transform methods which
dominate global atmospheric modeling. This offers the possibility of effective
use of many small processors of a parallel computer.

The Cartesian form of the shallow water equations was proposed by Swarz-
trauber in [23] and further developed in [16]. This alternative formulation avoids
the singularity in the velocity at the pole by expressing velocities in a 3-D Carte-
sian form instead of in spherical coordinates. The introduction of 3-D velocities
necessitates a change of the form of the shallow water equations. At first sight
this form appears more complicated and probably more expensive computation-
ally. But a closer examination shows the Cartesian formulation to be compact
and computationally simple.

The pole problem can also be partially addressed by introducing new scalar
variables derived from the velocity. The stream function/velocity potential or
the vorticity /divergence function are the usual choices. The resulting system of
equations then involves elliptic equations relating the new scalar variables. Since
there is no introduction of new scalar variables in the Cartesian formulation, the
introduction of elliptic equations is avoided. Thus, the Cartesian method has
a significantly lower operation count than those methods requiring the solution
of an elliptic equation.

The Cartesian geometry of the sphere and the discretization of the sphere
using the points of an icosahedral triangular mesh also lead to a computational
economy at the poles. The distances between points of this mesh are nearly
uniform and thus there is not a CFL restriction on timestep arising from a
longitudinal concentration of points near the pole. There is no need to filter the
solution near the poles, a step that can be costly for some methods and that
introduces errors on all scales.

The Cartesian formulation was used with the calculation of derivatives us-
ing a spectral vector harmonic method in [15]. In this paper we consider the
Cartesian formulation with the calculation of derivatives using a stencil of points
located on an icosahedral grid. The derivative approximations might be char-
acterized as locally spectral in that they are based on spherical harmonics but
only use a local stencil of points like a finite difference method. We show by
numerical experiments that the method of approximating differential operators



on the icosahedral mesh is accurate and converges as the mesh is refined.

The discretization 1s then applied to the shallow water equations on a sphere
and tested extensively on a set of standard cases for shallow water equation
solvers. These tests highlight many of the positive properties of the method
as well as expose some of its short comings. We pay particular attention to
the conservation properties of the computed solutions. It is found that by
changing the formulation of the shallow water equations to a “rotational form”,
the conservation and energy stability is significantly improved.

2 The Shallow Water Equations on a Sphere

The momentum and mass continuity equations for shallow water flows can be
written in advective form

d
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where the substantial derivative is given by
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The velocity is referred to a rotating Cartesian frame and the components of
v = (u,v) are in the longitudinal and latitudinal directions respectively. The
height of the free surface is defined i = h* + ks where h* 1s the depth of the
fluid and. the bottom surface height is given by the time invariant function
hs. External forcing, if present, is included in Fy = (F,, F},) and Fj. This
form of the equation is not in conservative form and consequently the numerical
methods we develop will not be strictly conservative.

It may be advantageous to evaluate the horizontal (surface) derivatives using
a Cartesian form. This form was developed in detail in [16]. By extending the
surface vector v = (u,v)? to the three-dimensional v, = (w,v,u)? the shallow
water equations can be embedded in the system
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7 is the radial coordinate (r = a at the earth’s surface) and

and

é= fu . 9)

If we define V = (X, Y, Z)T as the velocity in Cartesian coordinates (z, y, 2)
then

Vs = QV (10)
where
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Substituting (62) into (57) and multiplying by QT we obtain the Cartesian form
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and

QrB=g¢PV.h (16)
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Similarly the continuity equation in Cartesian form is
ah* T * *
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The matrix P projects an arbitrary Cartesian vector onto a plane that is tangent
to the sphere at the point (z,y, z).

2.1 Rotational Form of the Momentum Equation

The vorticity ¢ 1s defined in the spherical coordinate system as ( =k -V x v.
Using the vector identity
V-V
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the momentum equation can be written
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Changing variables to Cartesian velocities the resulting Cartesian equation
1s
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Since the curl is invariant under coordinate transformation we have that { =
k - V. x V where k is the unit vector in the direction normal to the sphere at

the point (x,y,2). That is, k = X. (This notation in Cartesian coordinates



should not be confused with the standard notation k for the unit vector in the
z-direction.) The Cartesian curlis the standard,
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These derivatives are available from the C matrix described above.

The rotational form of the momentum equation has one excellent property
for collocation methods[1]: it is semi-energy conserving. This can be seen by
considering the discrete kinetic energy equation obtained by vector multiplica-
tion of the momentum equation with the velocity. Ignoring forcing terms and
surface orography,
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The troublesome advection term is split into two parts, one purely normal to
the velocity and the other buried in the gradient as the kinetic energy. The first
term vanishes identically when multiplied by the Cartesian velocity because the
velocity is tangent to the surface of the sphere.

oY V.V
= ==V PV.(sh+——). (27)

Defining the total energy by £ = gh+ % and adding equation (27) to equation
(19) the discrete energy equation is

FE
66_15 = _V .PV.(E)=V-PV.gh—ghV.-V. (28)

For energy stability, the integral of the discrete energy must be constant,

oF

where, by way of notation, the overbar is the integral over the sphere, () = [, ().
Integrating equation (28) yields

0=—(V-PV,(E)) = (V-PV.gh+ghV. V). (30)

If the discrete gradient is the negative adjoint of the discrete divergence, the
energy equation becomes

0=+(EV, V) (V. (ghV)). (31)



For a divergence free velocity, the first term vanishes, and the second term is
the condition of global conservation of mass. So the discrete energy will be
conserved if these conditions are met. Using the rotational form in collocation
methods improves the nonlinear energy stability of the numerical method and
reduces the need for artificial diffusion to enhance stability.

3 Local Cartesian Spectral Approximation

The spherical harmonic functions form a basis for functions defined on the sur-
face of the sphere. They have long been used in climate and weather models as
the basis for the spectral method [7] and for the approximation of derivatives
on the surface of the sphere [14]. The spherical harmonic, ¥ can be defined
with the normalized associated Legendre functions P(8) by

V(A 0) = ™A P (6). (32)

The normalized associated Legendre polynomials can be defined from Rodrigues’
formula [13]

n n—m)! 1/2 man
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where z = cosf and 6 is colatitude. (In this section only @ refers to colati-
tude while in other sections it refers to latitude.) Equations (32) and (33) are
combined to give a formula for the Cartesian representation of the spherical
harmonics [17].
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Each spatial field could be approximated in Cartesian coordinates by a series
of trivariate polynomials. For example,

é(z,y,2) = ZcffYnm(x,y, z), (36)

m,n

where the ¢]' are coefficients of the trivariate polynomials ¥,]*. To find the ¢]'’s
in the expression for ¢, a least squares problem could be solved to fit ¢ data at
a set of points on the surface of the sphere with the expansion. Depending on
how many points this involves and how many terms are taken in the spectral
expansion, this 1s either a full rank or a rank deficient least squares problem.
For example, on an icosahedral grid each grid point has 6 or 7 nearest neighbors.
Using a second order interpolant, we have 9 spherical harmonics. This would
be a local spectral approximation.



4 Discrete Operator Formulas

Rather than interpolating a field and then differentiating the formula we can
alternatively approximate the differential operators directly by requiring that
the discrete operators act correctly on the selected basis functions. Given a
cluster of points {p;}, | = 0,...,np — 1 on the surface of the sphere and a
tabulation of a function U, {U(p;)} about the point py, we wish to determine
coefficients ¢; such that

np—1

LU)(po) & Y all(pr). (37)

=0

(The sense of the approximation (&) must be described.) We require (37) to
hold for all spherical harmonics through some number N,

np—1

LY )(po) 2 Y eV (pr)- (38)

The spherical harmonics Y," are ordered so that with increasing number the
degree increases, (see the Appendix for a listing of the harmonics as trivariate
polynomials). This system is then solved for the ¢;. A different set of ¢; are
required for each point py and the stencil of points around it. For the shallow
water equations, the stencil coefficients are calculated for each of the linear
operators L(U) = %, %, %, and the Laplacian, AU. This approach is general
and is applicable to any distribution of points on the sphere.

The sense of the approximation in (37) is as a least squares problem for (38).

The problem can be stated in matrix form: find ¢ which minimizes
[He — d||3 (39)

where H is a N x np matrix of spherical harmonics evaluated at points of the
stencil and d 1s the vector of the exact linear operator applied to the harmonics
evaluated at the point. The least squares problem can be solved elegantly using
the singular value decomposition (SVD) [6]. Let H = USV” be the SVD. The
matrix S =diag(o1,09,...,0,p) is the matrix of singular values in descending
order. The solution to the least squares problem is

c=vVs-1U'd (40)

The choice of N and np determine the formal accuracy and smoothness of the
derivative approximations. In general, we choose np points nearly symmetric
about the point pg. The number of points used in the stencil will determine
the efficiency of the method because evaluation of the derivatives requires a
combination of values from these neighboring points. For the icosahedral grid,



q Grid Points  Triangles  Apmin(km)  Apep(km)  hgpe(km)  hpmin/hmas
- 12 20 6699.0 6699.0 6699.0 1.0000
0 42 80 3482.0 3938.0 3710.0 0.8843
1 162 320 1613.0 2070.0 1901.0 0.7792
2 642 1280 761.1 1049.0 956.2 0.7255
3 2562 5120 368.4 526.3 478.8 0.7001
4 10242 20480 181.2 263.4 239.5 0.6878

Table 1: Geometric information for icosahedral grids

each point has 5 or 6 immediate neighbors (np = 7). (See Figure 1.) If the
immediate neighbors of each of these are included in the stencil, then np = 19.

A smoothing parameter that can be introduced in the approximation is the
truncation level in the SVD solution. The diagonal matrix of singular values,
S, can be used to smooth the least squares solution when the system is un-
derdetermined. By truncating the singular values that are smaller than some
tolerance, the minimum norm solution for ¢ is obtained. This truncation gives
a solution regardless of the underdetermined or overdetermined nature of the
least squares problem. We have found it advantageous to use the same trunca-
tion at all points. For np = 7, we truncate at six because the primary points of
the icosahedron have only five neighbors. The coefficients are unique at these
points and of minimum norm at the other points.

4.1 Numerical Results for the Gradient Approximation

The basic icosahedral mesh consists of twenty triangles on 12 grid points. Each
of the twelve points of the mesh is connected to five neighboring points. The
refinements of this mesh are subdivisions of the twenty base triangles. By placing
three points on the edges of each large triangle, one on each side and dividing
each triangle into three subtriangles, the ¢ = 0 mesh is obtained by projection
of the points (and edges) onto the surface of the sphere. Halving this mesh
results in the ¢ = 1 mesh and again halving gives the ¢ = 2 mesh. The number
of points in the mesh is given by the formula,

GP(q) =5(2%13) +2 (41)

Table 1 gives geometric information about the different icosahedral meshes.
To check the accuracy of the gradient approximations, a test function ex-
hibiting all modes was used,

$(A, 0) = alexpx + expy + exp 2) (42)

The errors in the following tables are derived from the Cartesian approximation
to the gradient of this function. The exact values of the function at the vertices



of the icosahedral mesh are computed and used in the difference formulas to
approximate the Cartesian derivatives. The Cartesian gradient is then trans-
formed to spherical coordinates and compared with the exact gradient of ¢. The
error reported is the {(>-error over the points of the icosahedral mesh.

The first question to be answered regards the choice of N and np the number
of points in the stencil. Is there an optimal choice for these parameters on a
given grid? If N = 9, then spherical harmonics of second order are used. If
N = 16, then third order harmonics are included. For N = 25, fourth order
harmonics are included. On an icosahedral grid each point is in a cluster of 6 or
7. Adding neighbors of these points with some symmetry leads to either 13 or
19 point clusters. These clusters define the stencil (see Figure 1) of the discrete
operator.

16 ©

10 12

Figure 1: Approximation stencil for a regular point of an icosahedral grid.

Plotting the error in Figure 2 with a log-log scale shows the second order
(or greater) convergence of the approximation as the mesh size is decreased.
Though the gradient approximations appear to be accurate for higher order
spherical harmonics, we will restrict attention in this paper to the quadratic
case using N =9 and np = 7.
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Figure 2: Convergence of the Gradient Approximations.
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5 Test Cases

A set of test cases for the shallow water equations on a sphere are detailed in
[23]. These cases provide a rigorous test of methods as well as allowing for
comparison between methods.

5.1 Advection Test

Test case 1 is a pure advection problem in which a cosine bell is blown around
the sphere under a constant velocity field. Figure 3 shows the relative RMS
error in the geopotential field as a function of time for a variety of grids. The
operators are approximated with quadratic spherical harmonics and use only
nearest neighbors. No diffusion was used for this case.

0.08

0.06 - 4

relative RMS error (h)

0.02 ||| -

0.00 * L !
0.0 100.0 200.0 300.0

Time (hours)

Figure 3: Relative RMS Error in height, Test Case 1, ¢ = 1,2, 3,4.

5.2 Steady, Zonal Flow Test

Test case 2 is a steady, non-linear zonal flow rotated through an angle o = Z.
It tests the ability of the code to maintain a steady state solution independent
of the grid orientation and gives a good idea of the accuracy of the methods.

The velocity and geopotential for this test case are exactly representable with
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the spherical harmonics of second order. So the local spherical harmonic ap-
proximations for the derivative operators are able to capture the steady state
solution extremely well. Figure 4 and b show the error, as a function of time, in
the velocity (using the relative RMS error with the exact steady solution) and
the RMS error in the height field, respectively. The ¢ = 2, 3 integrations used a
time step of 1200 seconds for the 5 day (120 hour) simulations while the ¢ = 4
mesh used a 600 second timestep. For the standard formulation, two diffusion
terms were added. The momentum equation was modified with a diffusion op-
erator ey AV where ey = 8000. Similarly the height equation was modified with
a diffusion coefficient of €, = 20000. For the rotational formulation, no diffusion
was added.

1.0e+00 ¢

1.0e-01 - E
‘?’ 1.0e-02 ¢ B
5 E ]
[%2)
=
o
(<53
=
< 1.0e-03 4
[}

1.0e-04 - E

1.0e-05 - ;

0.0 50.0 100.0 150.0

Time (hours)

Figure 4: Relative RMS Error in velocity, Test Case 2, ¢ = 2,3,4. Standard
Form

The rotational form gives somewhat better results with no diffusion added.
Figure 6 and 7 show the velocity error and the height error for the rotational form
of the Cartesian equations also using the serendipitous quadratic approximation
on 6 or 7 neighbors. The error growth is much more controlled.

A contor plot of the absolute geopotential error is given in figure 8. The error
is measured at 5 days. Clearly evident are the base points of the icosahedral
grid where the difference stencil involves 6 rather than 7 points.

The error is held to a small level, but other methods based on latitude-
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Figure 5: Relative RMS Error in height, Test Case 2, ¢ = 2,3,4. Standard
Form
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Figure 6: Relative RMS Error in Velocity, Test Case 2, ¢ = 2,3,4. Rotational
Form
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Figure 7: Relative RMS Error in Height, Test Case 2, ¢ = 2,3,4. Rotational
Form
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phi at time 432000.000000000
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Figure 8: Error in Geopotential at 5 days, Test Case 2, ¢ = 4. Rotational Form
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longitude grids do not exhibit a systematic error in wave number 5. This raises
questions about the influence of the truncation error on the computed solution.
What is the expected growth of this error in the nonlinear model due to a
perturbation of the initial conditions? To explore this question the computed
geopotential from the Cartesian model at 1 day was used as an initial condition
in a spectral shallow water equation model, STSWM [3]. The spectral code was
run at T42 resolution. After 5 days the STSWM Fourier spectrum at a given
latitude is compared to the spectrum of the Cartesian models solution for each
day, Figure 9. The Fourier wave amplitude is the square of the modulus of the
complex Fourier coefficient of the geopotential. The Fourier coefficients were
sampled at the latitude of the T42 spectral model nearest 26.6 degrees, which
is the location of one set of icosahedral points and the latitude of highest error
in the geopotential.

The solution spectrums to not match but show the same features. The
Cartesian solution has a wave 5, 10 and 15 component arising from the icosa-
hedral points. This mode appears to grow over time in the Cartesian model,
but no more so than the other modes. The perturbed spectral solution main-
tains the strong mode 5 components at day 5 with some redistribution of the
other modes. The diffusion characteristics of the two methods seem evident.
The continued growth of error in the Cartesian model might be attributed to
the truncation errors injected in the solution at each timestep. The growth is
not a nonlinear mode interaction since the perturbed spectral model shows a
preservation of the mode b amplitude.

When the Cartesian solution is used as initial conditions in the spectral
model, the errors are advected. As these errors, associated with different wave
numbers, move around the globe they sometimes cancel to produce smaller
errors and other times superimpose to create larger errors. Figure 10 shows the
error in the perturbed spectral solution at two different days for the northern
hemisphere. The error on day 4 is considerably more dispersed and smaller
than the error on day 3 or day 5 indicating a harmonic of the motion. The
Cartesian model and the Heikes-Randall model both show 8 peaks of error over
the 5 day period. Once an error is present it tends to remain over time, but each
model exhibits different numerical diffusion. The Cartesian model shows a much
smoother error than the spectral indicating that it is more diffusive than the
spectral model. The error profile of the Hiekes-Randall model (see their Figure
9) also shows less diffusion than the Cartesian model. It should be reiterated
that no diffusion has been explicitly added to any of these simulations for Case

2.

5.3 Non-Analytic, Steady, Zonal Flow Test

Test case 3 is a steady, non-linear zonal flow rotated through some angle o = %.
It is similar to test case 2 but with profiles not exactly representable by the

spherical harmonics since they are of compact support. The local spherical
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harmonic approximations for the derivative operators are able to capture the
steady state solution but not as well as in Test case 2. Figure 11 and 12 show the
error, as a function of time, in the velocity (using the relative RMS error with
the exact steady solution) and the RMS error in the height field, respectively.
Since the model includes no damping the error builds after a time and then
grows exponentially. The ¢ = 2,3 integrations used a time step of 1200 seconds
for the 5 day (120 hour) simulations while the ¢ = 4 mesh used a 600 second
timestep. For this case, no explicit diffusion was added to either the momentum
or height equations.
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Figure 11: Relative RMS Error in Velocity, Test Case 3, ¢ = 2,3,4. Standard
Form

The rotational form error results for case 3 are given in figures 13 and 14.
A contor plot of the absolute geopotential error is given in figure 15. The
error is measured at the 5 days.

5.4 Forced Nonlinear System with a Translating Low

Test case 4 1s a time dependent, non-linear forced flow with an exact solution.
It tests the performance of the scheme in an unsteady, dynamic simulation.
The flow is a translating low pressure center superimposed on a jet stream
symmetrical about the equator. The field is similar to a mid-level tropospheric
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Figure 12: Relative RMS Error in Height, Test Case 3, ¢ = 2,3,4. Standard
Form
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Figure 13: Relative RMS Error in Velocity, Test Case 3, ¢ = 2,3,4. Rotational
Form
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Form
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Figure 15: Error in Geopotential at 5 days, Test Case 3, ¢ = 4. Rotational
Form
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flow with a short-wave trough embedded in a westerly jet. As the simulation
progress, the low translates eastward maintaining its original shape.

Figure 16 and 17 show the error, as a function of time, in the velocity (using
the relative RMS error with the exact solution) and the RMS error in the height
field, respectively. The model in rotational form includes no damping. The
q = 2,3 integrations used a time step of 1200 seconds for the 5 day (120 hour)
simulations while the ¢ = 4 mesh used a 600 second timestep. The convergence
of the Cartesian method is again exhibited as the mesh is refined.
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Figure 16: Relative RMS Error in Velocity, Test Case 4, ¢ = 2, 3,4. Rotational
Form

5.5 Zonal Flow Over an Isolated Mountain

This test case is the only one with orography. A 5400m mountain i1s given
through the surface height function, h,;. No analytical solution is known for this
case so the usefulness of the case is in diagnosing the conservation properties
of the numerical scheme. The simulation used a diffusion coefficient of epsy =
5.0 x 10° with a timestep of 600 seconds for the ¢ = 4 mesh.

The following normalized integral quantities are presented as a function of
time: mass, total energy, potential enstrophy. The vorticity i1s presented as an
integral without normalization in Figure 18. The conservation properties of the
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Figure 17: Relative RMS Error in Height, Test Case 4, ¢ = 2,3,4. Rotational
Form
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Cartesian method are much better than expected considering that the difference
formula used to approximate the conservation of mass are not in flux form and
are not guaranteed to preserve the global mass. The excellent conservation of
enstrophy and vorticity are also a surprise. As normalized integrals it is not
evident from Figure 18 that the integral of enstrophy maintains a value near
machine zero (= 10713 ) throughout the simulation.
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Figure 18: Conserved integral quantities. Test Case b, ¢ = 4. Rotational Form

A contor plot of the geopotential A* at 15 simulated days is given in Figure
19.

5.6 Rossby-Haurwitz Wave

This classic standard test case [9] does not have an analytic solution for the
nonlinear shallow water equations. The initial conditions are zonal wave number
4. The solution at 0, 7, and 14 days continues to show the strong influence of
the initial conditions. A diffusion coefficient of ey = 1 x 10° was used for these
calculations. Interestingly, this is close to the value of the diffusion coefficient
used by Richardson in [10] and also by Williamson in [21].

The rotational form is semi-conservative of energy. Figures 20 shows the
conserved quantities of mass, energy, enstrophy as normalized integrals and the
conserved integral of vorticity through the simulation.
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Figure 19: Geopotential at 15 days, Test Case 5, ¢ = 4. Rotational Form
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Figure 20: Conserved integral quantities. Test Case 6, ¢ = 4. Rotational Form
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A contor plot of the geopotential at 14 simulated days is given in Figure 21.

phi at time 1209600.0
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Figure 21: Geopotential at 14 days, Test Case 6, ¢ = 4. Rotational Form

Departure of the solution from the initial wave 4 1s of interest. To examine
the structure of the solution and whether a mode 5 influence is unduly impact-
ing the Cartesian computation, the experiment using the spectral shallow water
code, described in test case 2, was repeated. The Cartesian model geopotential
output at 1 day was used as an initial condition in a spectral shallow water equa-
tion model, STSWM [3]. For reference, the Cartesian solution used for input to
the spectral model is plotted in Figure 22. After 5 days the STSWM Fourier
spectrum was compared to the spectrum of the Cartesian models solution, at
the Gaussian latitude nearest 50 degrees north. Figure 23.

The spectral analysis shows that the growth of low modes in the Cartesian
model is similar to the growth in the spectral model. The low modes grow
somewhat but are still three orders of magnitude less than mode 4. Modes 1-3
appear stable. Modes 5-7 grow somewhat over the 5 days. In particular, the
mode 5 growth is only somewhat larger in the Cartesian model than in the spec-
tral model. This indicates that the solution is exhibiting a (possibly nonlinear)
interaction between modes in response to the perturbed initial conditions. The
Cartesian method also shows a small compounding of truncation errors due to
the icosahedral gird points in mode 5. The distribution of spectral coefficients
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has more to do with the way energy cascades in the two models. This, in turn,
is related to the diffusion of energy inherent in the models.

The solutions of the perturbed spectral model and the Cartesian model dif-
fer only slightly by day 5 of the simulation. As seen in Figure 24, the Cartesian
exhibits a smoother solution due to the added diffusion. The asymmetry de-
veloping by day 14 is not evident but the high latitude departure from wave
4 are manifest. This can be associated with the growth and interaction of the
lower wave numbers. The wave 4 interacts with the wave 5 in the perturbation
to produce a response in 1 and 9. These waves then interact with the entire

spectrum.
MODEL HEIGHT TEST 6,EXP.0006,T—- 42,T= .0,DT= 600 MODEL HEIGHT TEST 6,EXP.0006,T— 42,T= 96.0,DT= 600
e T — e
f‘\/;ﬂﬁw\/hasuo\/h\ N ——————8500___

v ey v

N
10500\ 9500

_Ee

100007

i + 10000: ‘\_/

7 199% y’
o0 s

5000 = ooho. J

\
C) smoo‘\\ 500,
— wi—— ~—
— —— = :
CONTOUR FROM 8200 TO 10400 BY 100 CONTOUR FROM 8300 TO 11000 BY 100

Figure 24: Test Case 6, (a) Cartesian Geopotential at Day 5, (b) Perturbed
Spectral Geopotential at Day 5.

5.7 Analyzed 500mb Initial Conditions

The real data initial conditions differ in smoothness from the previous cases
exhibiting much finer scale structure and sharper gradients. For non-linear
calculations there will be much stronger interaction of modes and more active
dispersive phenomena. A diffusion coefficient the same as for test case 6 controls
the build up of energy in the fine scales. A timestep of 300 seconds is used on
the ¢ = 4 mesh with 10242 points.

The first test case using analyzed atmospheric conditions is for 000GMT 21
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December 1978. The spectral non-linear normal mode analysis has been used to
filter gravity waves from this data. The NCAR netCDF file “REF0077.cdf” was
used for initial conditions of both geopotential and velocity at the icosahedral
grid points. The strong flow over the north pole has been useful in diagnosing
pole problems for several numerical schemes.

Figures 25 shows the conserved quantities of mass, energy, enstrophy as nor-
malized integrals and the conserved integral of vorticity through the simulation.
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Figure 25: Conserved integral quantities. Test Case 7Ta, ¢ = 4. Rotational Form

Figures 26 and 27 show a comparison of the reference solution with the
Cartesian solution at one and five days, respectively.

The second real data case uses the NCAR file “REF0087.cdf”. The flow
develops into a typical blocking situation from an initial condition of two cut-off
lows. Initial conditions are for 0000 GMT 16 January 1979. Figures 28 and 29
show a comparison of the reference solution with the Cartesian solution at one
and five days, respectively.

Figures 30 shows the conserved quantities of mass, energy, enstrophy as nor-
malized integrals and the conserved integral of vorticity through the simulation.

The third real data case has initial conditions from 0000 GMT 9 January
1979 and uses the NCAR file “REF0088.cdf”. Initially it has a strong zonal
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Figure 26: Test Case 7a, (a) Reference Solution at 1 Day, (b) Cartesian Geopo-
tential at 1 Day.
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Figure 27: Test Case 7, (a) Reference Solution at 5 Day, (b) Cartesian Geopo-
tential at 5 Day.
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Figure 28: Test Case Tb, (a) Reference Solution at 1 Day, (b) Cartesian Geopo-

tential at 1 Day.
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Figure 29: Test Case 7, (a) Reference Solution at 5 Day, (b) Cartesian Geopo-

tential at 5 Day.
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Figure 30: Conserved integral quantities. Test Case 7b, ¢ = 4. Rotational Form
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flow. Figures 31 and 32 show a comparison of the reference solution with the
Cartesian solution at one and five days, respectively.

Reference solution phi at 1 day Cartesian phi at 1 day
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Figure 31: Test Case 7c, (a) Reference Solution at 1 Day, (b) Cartesian Geopo-
tential at 1 Day.

Figures 33 shows the conserved quantities of mass, energy, enstrophy as nor-
malized integrals and the conserved integral of vorticity through the simulation.

5.8 Conclusions

Numerical methods for the shallow water equations on the sphere are faced
with three hurdles. First, the accuracy of the geostrophic wind balance. The
numerical approximation for the gradient of the geopotential must balance the
Coriolis term well. Since the Coriolis term does not involve derivatives the gra-
dient approximation is crucial to achieve a reasonable balance. Second, the pole
problem. Since the spherical coordinate representation of the velocity is singu-
lar at the poles, derivatives must be approximated with care. The third hurdle
is stability. As nonlinear equations, the energy consistency of conversion terms
from potential to kinetic energy play a crucial role. In our work, the first hurdle
has been passed by adopting a co-located velocity and gradient approximation.
The collocation method with accurate approximations for the derivatives gives
an excellent balance of the geostrophic wind terms. The Cartesian method is
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Figure 32: Test Case 7c, (a) Reference Solution at 5 Day, (b) Cartesian Geopo-
tential at 5 Day.
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Figure 33: Conserved integral quantities. Test Case 7c, ¢ = 4. Rotational Form
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free of the pole problem since velocities are continuous at the poles. Finally, the
rotational form of the equations in Cartesian form gives reasonably good energy
conservation to maintain stability.

The serendipitous use of least squares fitting of the quadratic spherical har-
monics to a seven point stencil has given second order convergence for the price
of something less. In addition, the Cartesian method does not require the solu-
tion of elliptic equations and as a result, has a low operation count.
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A Spherical Harmonic Polynomials
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