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A collection of MATLAB classes for computing and using spherical harmonic transforms is pre-
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spectral approximation to the differential operators ∇·, ∇×, ∇, and ∇2 in spherical geometry.
Laplace inversion and Helmholtz equation solvers are also methods for this class. The use of the
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1. INTRODUCTION

The spherical harmonic transform is a critical computational kernel of the dynamics
algorithms for numerical weather prediction and climate modeling. The announce-
ment of sustained rates of 26.5 Tflops on the Japanese Earth Simulator (ES40, with
NEC SX-6+ nodes) for an atmospheric simulation motivated a study of algorithmic
options implementing spectral transforms and led to the development of this set
of MATLAB classes to facilitate the study of alternative algorithms. The paper
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[Shingu et al. 2002] that won the 2002 Gordon Bell Award in Supercomputing used
the full 640 nodes of the Japanese Earth Simulator with an atmospheric general
circulation model (the AFES code) with a multi-level spectral transform algorithm.
The dynamics part of the calculation accounted for 62% of the total time with the
Legendre transform alone accounting for 51.8%. The columnar physics calculations
that balance radiation and moist atmospheric processes only used 12% of the total
run-time. The spectral resolution reported was a triangular truncation (T1279)
with 96 levels on a 3840 x 1920 horizontal grid. This is high resolution ( 10km) for
a weather prediction model and ultra-high for a climate model which must be inte-
grated in time for years instead of days. The horizontal resolution typically used for
climate simulations in the U.S. research community is T85 with 26 vertical levels,
which requires a 256 x 128 horizontal grid [Drake et al. 2005; Worley and Drake
2005]. The parallel algorithm used for these high resolution studies and benchmark-
ing was given in [Foster and Worley 1997]. The FFT algorithm used was given in
[Temperton 1983], a Fortran code specifically designed for vector computation of
multiple (blocked) fast Fourier transforms.

The spatial resolution of a spectral model is referred to as a truncation and
specifies the number of spectral modes retained in the representation of a scalar
field. Spectral methods have been applied to a wide range of fluids problems and
the theory of their application is given in [Canuto et al. 1991]. For flows in a global
domain, the prefered basis set for approximation of functions on the sphere is the
spherical harmonic basis. The spherical harmonic transform is used to project grid
point data on the sphere onto the spectral modes in an analysis step and an inverse
transform reconstructs grid point data from the spectral information in a synthesis
step. The synthesis step is described in equation (1). The analysis step is described
by equations (2) and (3) consisting of the computation of the Fourier coefficient ξm

and the Legendre transform which incorporates the Gaussian weights corresponding
to the Gaussian latitudes µj = sin(θj).

ξ(λ, µ) =
M∑

m=−M

N(m)∑
n=|m|

ξm
n P

m
n (µ)eimλ, (1)

ξm
n =

J∑
j=1

ξm(µj)Pm
n (µj)wj , (2)

ξm(µj) =
1
I

I∑
i=1

ξ(λi, µj)e−imλi . (3)

For a Gaussian grid the triangular spectral truncation requires the number of
longitudes I ≥ 3M + 1 and number of latitudes J = I/2 , where M refers to the
modal truncation number. In what follows we will assume a triangular truncation,
though extension to other truncations is straightforward.

As atmospheric models push toward higher horizontal resolution, the algorithms
used for the spectral transform are of interest and it is useful to have MATLAB
implementations for testing and exploration of these algorithms. In this paper
MATLAB classes are presented that implement the spherical harmonic transform
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along with methods based on the spectral method for approximating the standard
differential operators in spherical geometry. The use of these classes and methods
is illustrated by solving the barotropic vorticity equation on a sphere. A survey of
alternative methods and a discussion of parallel algorithms on high performance
computers concludes the study.

2. FORMULATION OPTIONS

2.1 BLAS Formulation

The recommended software package for the spherical harmonic transforms is
SPHEREPACK [Adams and Swarztrauber 1999], a set of Fortran routines devel-
oped at the National Center for Atmospheric Research (NCAR). Another toolkit of
Fortran routines is available from [Wieczorek 2007]. For MATLAB computations,
it is always possible to link with compiled routines using mex files. But there is
an advantage in having native MATLAB code for exploring algorithms and testing
performance. There are several collections of spherical harmonic routines currently
available through the MATLAB software exchange [Kelbert 2007] but none offer
methods for differential equations. The paper [Simons et al. 2006] is a good refer-
ence for methods and algorithms using other spherical approximation methods.

The spherical harmonic transform can be formulated in terms of matrix opera-
tions. This follows from the fact that it is a linear transformation of one basis rep-
resentation to another. Since the Fourier transform calculation is most efficiently
organized with the FFT algorithm, what we describe here is a matrix formulation
for the Legendre transform. A generalization to non-Gaussian grids is also possi-
ble as reported in [Swarztrauber and Spotz 2000]. For high performance hardware
the efficiency of specialized matrix operations is well known and forms the basis of
the LINPACK benchmark [Dongarra 2007]. The Basic Linear Algebra Subroutines
(BLAS) have been optimized by most vendors and offer near peak rates. Since
the Legendre transform can be expressed in matrix form we are led to explore the
possibility of using BLAS routines for the computational kernel of the spherical
harmonic transform.

The performance study [Shingu et al. 2002] considered inner and outer product
formulations with specific attention to vectorization, but did not use a BLAS ap-
proach. In an unpublished study, Li [Li 1996] described the principal sums that
form the Legendre transform in the synthesis and analysis phases and determined
a dense matrix formulation that took advantage of the symmetry of the associated
Legendre functions. The principal sum for the synthesis phase is

sm
j =

N(m)∑
n=m

ξm
n P

m
n (µj) (4)

where the ξm
n is the spectral coefficient of a field. The principal sum of the analysis

phase is

ξm
n =

J∑
j=1

sm
j P

m
n (µj) (5)

where the sm
j = wjξ

m(µj) represents the product of the Gauss weight and the m-th
Fourier coefficient at latitude j.
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The matrix-matrix multiplications representing these sums require some addi-
tional notation. Let

Pm =



Pm
m (µ1) Pm

m+1(µ1) . . . . . . Pm
N(m)(µ1)

Pm
m (µ2) Pm

m+1(µ2) Pm
N(m)(µ2)

...
. . .

...
...

. . .
...

Pm
m (µJ/2) Pm

m+1(µJ/2) . . . . . . Pm
N(m)(µJ/2)


(6)

be the matrix of associated Legendre functions for mode m at half of the Gauss
points. Since Legendre functions are symmetric about the equator and the Gauss
points are anti-symmetric, the algorithm does not require computation of the func-
tions at all the points. The operative identities are

Pm
n (µJ+1−j) = Pm

n (−µj) = (−1)n−mPm
n (µj). (7)

Introducing a vector notation for the spectral coefficients,

xm =


ξm
m

ξm
m+1
...

ξm
N(m)

 (8)

and

x̃m =


ξm
m

−ξm
m+1
...

(−1)N(m)−mξm
N(m)

 , (9)

the first principal sum can be represented in a matrix-matrix multiplication formu-
lation as 

sm
1 sm

J

sm
2 sm

J−1
...

...
sm

J/2 sm
J/2+1

 = Pm[xmx̃m]. (10)

In this equation the sm
j ’s and the ξm

n ’s are complex, while the P matrix is real.
Computational performance may be enhanced by explicitly separating the complex
vectors into real and imaginary parts, forming input and output matrices with four
columns instead of two. The inverse transform (analysis phase) involves two steps.
First, a matrix-matrix multiply step uses the transpose of the Legendre matrix,

τm
1 τ̃m

J

τm
2 τ̃m

J−1
...

...
τm
J/2 τ̃m

J/2+1

 = (Pm)T


sm
1 sm

J

sm
2 sm

J−1
...

...
sm

J/2 sm
J/2+1

 . (11)
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The intermediate quantities, τm
n and τ̃m

n , are then used to compute the spectral
coefficients,

ξm
n = τm

n + (−1)n−mτ̃m
n . (12)

The formulation has been implemented in MATLAB, where the fast BLAS from
LAPACK [Anderson et al. 1999] are available when matrix notation is used. This
allows us to test the formulation as well as the assumptions of advantage with
specialized library routines. The MATLAB code and class structure used to express
the formulation are described in section 3.

By timing the computational portions of the transforms we note that a con-
siderable amount of time is spent in packing and unpacking Fourier and spectral
coefficients and very little in the matrix multiply and FFT. Both of these compu-
tational steps are highly optimized in MATLAB, using FFTW for the FFTs and
LAPACK [Anderson et al. 1999] for the matrix multiply. This is very similar to
the situation with using math libraries on supercomputers since these are highly
optimized but may in fact require incompatible storage orders.

2.2 Open Loop Formulation

A formulation that does not require explicit data movement to accommodate special
purpose routines leaves much to the compiler. A good compiler will recognize BLAS
constructs and take appropriate action depending on the size of loops, etc.

The basic computational loops in (4) and (5) are the same, but we split them to
exploit the symmetry of the Legendre functions. This is done by partitioning into
odd and even modes. The first sum can be written in two parts for (1 ≤ j ≤ J/2),

sm
j =

N(m)∑
n=m

ξm
n P

m
n (µj) (13)

and

sm
J+1−j =

N(m)∑
n=m,2

ξm
n P

m
n (µj)−

N(m)∑
m+1,2

ξm
n P

m
n (µj). (14)

The second sum is represented in different ways when (n−m) is odd or even,

ξm
n =

J/2∑
j=1

(sm
j + sm

J+1−j)P
m
n (µj), mod2(n−m) = 0, (15)

ξm
n =

J/2∑
j=1

(sm
j − sm

J+1−j)P
m
n (µj), mod2(n−m) = 1 (16)

See Algorithms 3.3 and 3.4 for MATLAB implementations of the open loop formu-
lation.

2.3 Legendre Functions On-the-Fly Formulation

In [Spotz2001], a four term recursion is given for computing the normalized asso-
ciated Legendre functions. Since the recursion can be applied to an entire column
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of the Pm matrix with vector operations, it may be advantageous to compute the
functions on the fly. This has the added advantage of reducing the storage required
for the spectral transform from O(M3) to O(M2) .

The normalized associated Legendre functions are defined by

Pm
n (θ) ≡ 1

2nn!

√
(2n+ 1)(n−m)!

2(n+m)!
cosm(θ)

dn+m

dµn+m
(µ2 − 1)n, (17)

where µ = sin θ . The four-term recursion starts from pre-computed and stored
values of the matrices P0 and P1 . Denoting a single column of the Pm matrix by

~Pm
n =

 Pm
n (µ1)

...
Pm

n (µJ/2)

 , (18)

the recursion in [4, equation D.1] is given by

~Pm+1
n+1 =

1
an+m+1

(bnan+m+1
~Pm−1

n−1 − an−m+1
~Pm−1

n+1 + bnan−m−1
~Pm+1

n−1 ). (19)

The coefficients of the recursion are given explicitly by an =
√
n(n+ 1) and bn =√

(2n+3)
(2n−1) . Using this recursion the columns of the other matrices can be computed

using vector operations. These can be computed on the fly as part of the m-loop of
the Legendre transforms in either formulation. Since the recursion can be split into
odd and even modes it fits well with the open loop formulation without requiring
either duplicate computation or intermediate storage.

A discussion of performance of these options on vector and scalar processors was
given in [D’Azevedo 2004].

3. MATLAB SPHERICAL HARMONIC CLASSES

The MATLAB programming language supports object-oriented programming by
specifying a user class directory. The subdirectory is usually called my classes.
The software for spherical harmonic transforms described in this paper can be
added to a users directory and used to extend MATLAB’s functionality. The
classes are included in the my classes subdirectory with the folder naming con-
vention @class name. Following ESMF style conventions [Collins et al. 2005], the
methods and data structures for the spectral transform fall into two classes: the
@gauss grid and the @spectral field. The @gauss grid class defines the evenly spaced
longitudinal points and the latitudinal points corresponding to the Gauss points of
the spherical grid. In addition, the geometric information, such as the radius of the
sphere and the values of the associated Legendre functions at the points is stored.
The standard get,set and display methods are provided. In the private methods
are grule, which calculates the Gauss points and weights, and shtraninit, which
computes the Pm matrix to initialize the spherical harmonic transform. The ini-
tialization of a @gauss grid object specifies the number of latitudinal points, nj.
A triangular truncation of the spectral coefficients is assumed, so for example, if
nj = 32, the spectral transform is initialized for T21 spectral fields.
ACM Transactions on Mathematical Software, Vol. X, No. Y, ?? 200?.
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Spherical harmonic transforms act on fields which are defined on spherical Gaus-
sian grids. The @spectral field class defines such a field. The analysis method, which
computes spectral coefficients from grid point values of a field, is shtrana. The in-
verse transform (synthesis), that computes grid point values from given spectral
coefficients, is called shtrans. The Legendre transforms (forward and backward)
are private methods. Algorithmic options such as discussed above may be included
here, but the default is the open loop formulation. The MATLAB complex FFTW
is used by the shtrana(s) methods to compute the real transforms. In addition to
the basic set, get and display methods, a variety of differential operators are imple-
mented. The method library that uses spherical transforms to discretize differential
operators in spherical geometry includes:

div - the spherical (horizontal)
divergence operator, ∇·

1
a

[
1

1−µ2
∂U
∂λ + ∂V

∂µ

]
curl - the curl operator, k · ∇× 1

a

[
1

1−µ2
∂V
∂λ − ∂U

∂µ

]
grad - the spherical (horizontal)
gradient operator, ∇

(
1
a

∂
∂λ ,

1−µ2

a
∂

∂µ

)
del2 - the spherical (horizontal)
Laplacian operator, ∇2 = ∆

1
a2

[
1

1−µ2
∂2

∂λ2 + ∂
∂µ

(
(1− µ2) ∂

∂µ

)]
del2inv - the inverse Laplacian
operator (Laplace equation solu-
tion)

∆−1

helmholtz - the solution of
Helmholtz equation

k2g +∇2g = f

UVinv - the inversion operator for
the vorticity, divergence and ve-
locity

To calculate the divergence of (U, V ) the spectral coefficients are summed with the
derivative, Hm

n = (1− µ2)dP m
n

dµ of the spherical harmonic, according to the formula

div(U, V )m
n =

1
a

J∑
j=1

[imUm(µj)Pm
n (µj)− V m(µj)Hm

n (µj)]
wj

(1− µ2
j )
. (20)

The Um denotes the Fourier coefficient of the U = u cos θ field. Note that normally
multiplication by cos θ is necessary so that the vector field is differentiable at the
poles. All FFTs are computed in MATLAB using the native routines. This leads
to some inefficiency due to use of complex transforms for real fields (see Exercise
3.6 of [Trefethen 2000]).

The curl of (U, V ) is calculated in spectral space from the formula

curl(U, V )m
n = −1

a

J∑
j=1

[imV m(µj)Pm
n (µj) + Um(µj)Hm

n (µj)]
wj

(1− µ2
j )
. (21)
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The gradient operator is not invariant under choice of coordinate system. The
operator is calculated in the (λ, µ) system as

∇(λ,µ)φ =
(

1
a

∂φ

∂λ
,
1− µ2

a

∂φ

∂µ

)
. (22)

To convert to θ-coordinates we have ∇(λ,µ) = cos θ∇(λ,θ). The computation of the
components uses the Legendre synthesis with H rather than P in the summation
of cofficients. {

1
a

∂φ

∂λ

}m

n

=
1
a

∑
m

∑
n

imφm
n P

m
n (µ)eimλ (23)

and {
1− µ2

a

∂φ

∂µ

}m

n

=
1
a

∑
m

∑
n

φm
n H

m
n (µ)eimλ. (24)

Note that the first component computation could be done in Fourier space.
Similarly the Laplacian is calculated in spectral space using the eigenfunction

relationship for the operator with the spherical harmonics,

∇2ψ
m
n = −n(n+ 1)

a2
ψm

n . (25)

This relation is inverted for the solution of Laplace’s equation using del2inv. A
similar derivation applies for the Helmholtz equation.

The inversion of the (U, V ) relationship with vorticity, ξ = k · ∇×v, and diver-
gence, δ = ∇·v, is given by the sums,

U(λi, µj) = −
M∑

m=−M

N(m)∑
n = |m|
n 6= 0

a

n(n+ 1)
[imδm

n P
m
n (µj)− ξm

n H
m
n (µj)] eimλi

V (λi, µj) = −
M∑

m=−M

N(m)∑
n = |m|
n 6= 0

a

n(n+ 1)
[imξm

n P
m
n (µj) + δm

n H
m
n (µj)] eimλi

A test method is provided along with a rudimentary plot method for spectral
fields as a unit test for each method of the spectral field class. Initialization of a
spectral field requires a previous gauss grid object. The get and set methods can
be used to initialize the grid point values or the spectral coeffecients. The plots
in Figure 1 are from the test method using field values of the spherical harmonic,
Y 7

3 (λ, θ). These plots show values of Y 7
3 on the sphere along with a plot of the

error in transforming the field values into spectral space, performing the backwards
transformation and forming the difference. Errors are less than 10−14, indicating an
accurate double precision computation. To invoke the test method from MATLAB
requires that the user my classes subdirectory be added to the MATLAB path and
that a gauss grid and spectral field are initialized. For example,

% addpath ~/Matlab/my_classes
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% G = gauss_grid(’T42’,64);
% f = spectral_field(’test function’,G);
% test(f);

MATLAB will use optimized versions of the BLAS if certain environment vari-
ables are set when MATLAB is invoked. To take maximum advantage of the matrix
formulation, an alias may be useful to set these environment variables. For example,

alias matlab=’export BLAS_VERSION=atlas_P4.so;
export LD_ASSUME_KERNEL=2.3.98;
/usr/share/linux.x86/Matlab6/bin/matlab’

Vectorized versions for MATLAB of the Legendre open loop formulations are in-
cluded in the software.

To illustrate the coding style, Algorithm 3.1 and Algorithm 3.2 are programs for
the spherical harmonic analysis and synthesis as implemented in MATLAB. Algo-
rithms 3.3 and 3.4 are examples of the private methods of the spherical harmonic
field class that implement the open loop formulation of the Legendre transform.

Algorithm 3.1. Spectral Analysis

function f = shtrana(f)
% SHTRANA Spectral analysis of a spectral grid field
% Compute the spectral coefficients from the field grid
% point values using a spherical harmonic transform analysis
%——————————————————–
% Input:
% f - spectral field class object
% In particular:
% f.gp - field grid point values
% f.G - field gauss grid
% Method of spectral field class: Sept 2005
%—-—–—–—–————-—————-

ni = get(f.G,’ni’); nj = get(f.G,’nj’);
mm = get(f.G,’mm’); nn = get(f.G,’nn’); kk = get(f.G,’kk’);
wg = get(f.G,’wg’); P = get(f.G,’P’); gp = get(f,’gp’);

%——————————————————–
xf =fft(gp,ni)/ni; %note normalization for MATLAB FFT

%order ni= 2n real transform coming out as r0,r1,r2...i2,i1
%multiply Fourier coefficients by the Gauss weights

for j=1:nj
xf(:,j)=wg(j)*xf(:,j);

end
f.sc = legtranOLa(xf,nj,mm,nn,kk,P); % inverse Legendre
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Fig. 1. MATLAB output from test showing the spherical harmonic function Y 3
7 and the error a

forward and backward transform.
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Algorithm 3.2. Spectral Synthesis

function f = shtrans(f)
% SHTRANS Spectral synthesis to a spectral grid field
% Compute the grid point values from the spectral coefficients using
% a spherical harmonic transform synthesis
%——————————————————–
% Input:
% f - spectral field class object
% In particular:
% f.gp - field grid point values
% f.G - field gauss grid
% Output:
% f.sc - Output array of complex spectral coeffiecients (n,m)
% Local
% xf - matrix of Fourier coefficients ordered (m,j)
% Method of spectral field class: Sept 2005
%—-—–—–—–—————————–

ni = get(f.G,’ni’); nj = get(f.G,’nj’);
mm = get(f.G,’mm’); nn = get(f.G,’nn’); kk = get(f.G,’kk’);
wg = get(f.G,’wg’); P = get(f.G,’P’);

%——————————————————–
xf = legtranOLs(f.sc,nj,mm,nn,kk,P); % inverse Legendre transform

%make xf into a Hermitian array for real transform back
for m=1:ni/2

xf(ni-m+1,:) = conj(xf(m+1,:));
end
f.gp =real(ifft(xf,ni))*ni; % inverse Fourier transform, note normalization

ACM Transactions on Mathematical Software, Vol. X, No. Y, ?? 200?.



122 · Drake, Worley and D’Azevedo

Algorithm 3.3. Legendre Transform Analysis - Open Loop

function x = legtranOLa(s,nj,mm,nn,kk,P)
% Compute a Legendre transform analysis
% Input:
% s - complex Fourier coeffecients ordered (m,j)
% nj = number of Gauss latitudes
% mm, nn,kk are the truncation parameters
% P - associated Legendre functions ordered (j,n,m)
% Output:
% x - matrix of spectral coefficients ordered (n,m)
%——————————————————–
% Based on Spherical harmonic transform formulation with open loops (OL)
%—-—–—–—–————————————

njo2=nj/2;
x = zeros(nn+1,mm+1);
for m=0:mm

j=1:njo2;
for n=m:2:nn

x(n+1,m+1) = x(n+1,m+1)
+ (s(m+1,j) + s(m+1,nj-j+1))*P(j,n+1,m+1);

end
for n=m+1:2:nn

x(n+1,m+1) = x(n+1,m+1)
+ (s(m+1,j) - s(m+1,nj-j+1))*P(j,n+1,m+1);

end
end
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Algorithm 3.4. Legendre Transform Synthesis - Open Loop

function s = legtranOLs(x,nj,mm,nn,kk,P)
% Compute a Legendre transform synthesis – OPEN LOOP formulation
% Input:
% x - complex spectral coeffecients (n,m)
% nj = number of Gauss latitudes
% mm, nn,kk are the truncation parameters
% P - associated Legendre functions ordered (j,n,m)
% Output:
% s - matrix of Fourier coefficients ordered (m,j)
%——————————————————–
% Based on Spherical harmonic transform formulation as an open loop
%—-—–—–—–—–——————————-

njo2=nj/2;
ni=2*nj;

%
s=zeros(mm+1,nj);

%
for m=0:mm

for j=1:njo2
for n = m:nn

s(m+1,j) = s(m+1,j) + x(n+1,m+1)*P(j,n+1,m+1); %first half
end
for n=m:2:nn

s(m+1,nj-j+1) = s(m+1,nj-j+1)
+ x(n+1,m+1)*P(j,n+1,m+1); %second even

end
for n=m+1:2:nn

s(m+1,nj-j+1) = s(m+1,nj-j+1)
- x(n+1,m+1)*P(j,n+1,m+1); %second odd

end
end

end

4. BAROTROPIC VORTICITY EQUATION: MATLAB EXAMPLE

To demonstrate the use of the spectral transform in dynamics equations for the
atmosphere, the simplest setting is a barotropic vorticity equation. The velocity is
related to a horizontal stream function by v = k × ∇ψ. This stream function is
calculated by inverting the elliptic equation

∇2ψ = ξ, (26)

where ξ is the (absolute) horizontal vorticity, ξ = k ·∇×v. The governing equation
of motion is given in terms of the potential vorticity

dη

dt
= 0. (27)

The potential vorticity is related to the absolute vorticity by η = ξ + f , where
f = 2Ω sin θ is the Coriolis term. The potential vorticity equation is written in
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advective form with the material derivative

dη

dt
≡ ∂η

∂t
+ v · ∇η. (28)

The time integration algorithm directly treats the material derivative operator
using a semi-Lagrangian transport scheme. Particle tracking to determine “depar-
ture points” uses the MATLAB @slt grid class which extends the Gaussian grid
with extra halo points for interpolation methods.

The barotropic vorticity solution algorithm also follows the ESMF style [Collins
et al. 2005] specification of a gridded component model with a begin, run, finalize
steps. In brief, the solution algorithm is as follows:

Algorithm 4.1. Barotropic Vorticity Integration

Begin method
integration control initialization
gauss grid initialization
slt grid initialization
spectral field initialization (prognostic initial conditions)
spectral field initialization (diagnostic initial conditions)

Run method (loop until solution end time)
slt particle tracking and departure point calculation
slt interpolation of η at departure points
slt interpolation of right hand side at departure points
update η to new time level
UVinv invert diagnostic relation to get new velocity v
del2inv invert Laplace operator to get stream function ψ

Finalize method

The example MATLAB program BV.m integrates the barotropic vorticity equa-
tion for three days starting from an initial Rossby-Haurwitz wave number four. The
plots in Figures 2, 3,4 show the final solution after three days for potential vorticity,
stream function and velocities using a T10 spectral truncation for the gauss grid.
The correct symmetries are apparent though a higher resolution solution would
better display the persistence of the wave number four in the solution.

5. ALTERNATIVE ALGORITHMS

A number of papers propose alternative algorithms for the spherical harmonic trans-
form. In this section we will briefly survey these in an effort to gauge their appro-
priate use for high resolution climate and weather modeling. The possibility of
replacing the transform kernel with a lower operation count algorithm, or of find-
ing a more efficient method of computation is what motivates the survey. Our
conclusion is that new formulations of the larger dynamical problem and other
means of evaluating derivatives for the partial differential equations do indeed offer
more promising algorithms. These new algorithms represent the progress in the
numerical analysis of spectral methods that has occurred over the last decade but
has not yet found its way into production use.
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Fig. 2. MATLAB output from BV.m barotropic vorticity example showing potential vorticity.

5.1 THE FAST SPHERICAL HARMONIC ALGORITHMS

Driscoll and Healy [Driscoll and Healy, Jr. 1989] introduced the first exact fast
spherical harmonic transform. Subsequent refinements [Healy, Jr. et al. 2003; Inda
et al. 2001; Mohlenkamp 1999] have resulted in parallel versions with reasonable
accuracy, stability and performance. The asympototic operation count for the fast
algorithm is M2(logM)2 . A cross-over point for performance in comparision with
the direct method occurs at M=128 with a savings by a factor of three at M=512.
For M=1279 and other high resolution cases, the operation count of the transform
can be reduced dramatically.

An approximate fast transform has been developed using the ideas in [Boyd
1992]. The new algorithm [Suda and Takami 2002] is based on fast polynomial
interpolation accelerated by the Fast Multipole Method. The asymptotic operation
count is proportional to M2 logM , an improvement on the Driscoll and Healy
algorithm. The crossover point with the direct method is observed at M=512. A
speedup factor of 1.8 is observed at M=1365. Another approximate method with
an O(M2 logM) operation count is proposed in [Rokhlin and Tygert 2006].

5.2 FFT2D Derivative Evaluations

The main use of the spectral method is in the highly accurate and efficient rep-
resentation of differential terms in numerical approximations to partial differential
equations. For the flow equations of the atmosphere used in weather and climate
modeling, the spherical harmonic spectral representation leads to diagonal forms
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Fig. 3. MATLAB output from BV.m barotropic vorticity example showing stream function.

for the Laplacian operator. The solution to a Helmholtz equation is the critical step
in a semi-implicit time discretization that effectively filters gravity waves and sta-
blizes long time integrations. The spectral methods offer an important advantage
for the solution of this Helmholtz equation over more standard grid point (finite
difference, control volume and finite element) methods.

An alternative way to evaluate the differential terms uses a 2-D (lon-lat) FFT
where the latitude direction is taken on great circles. The paper [W.F. Spotz
and Swarztrauber 1998] studies Merilee’s pseudospectral model and finds a FFT
based algorithm that exactly matches results from a spherical harmonic transform
model. The evaluation of derivatives can be accomplished with I2 log I operations.
The argument is made that, with the addition of a fast projection algorithm to
ensure all modes remain in the spherical harmonic space, the FFT2D based model
is the fastest spherical harmonic algorithm. This method was coupled with two and
three level semi-Lagrangian time-stepping methods for a very efficient, high order
solution algorithm [Layton and Spotz 2002]. The key new element that makes these
algorithms attractive is the existence of a fast spherical harmonic projection which
stabilizes the Fourier method.

5.3 Fast Spherical Harmonic Projection Algorithms

The projection of a function onto the spherical harmonic modes (analysis) followed
by the inverse transformation back to grid point space is a filter of the original
function. If there is no need to use the spectral coefficients to evaluate derivatives,
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Fig. 4. MATLAB output from BV.m barotropic vorticity example showing velocity field.
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then the forward and inverse transforms can be combined algebraically to produce
an explicit projection operator. Several algorithms have been studied in [Spotz and
Swarztrauber 2001] and compared in single processor and parallel implementations.

An interesting method for evaluating the projection utilizes a Fast Multipole
Method. The multipole projection was proposed as an approximate, fast projection
method. It is based on an application of the Christoffel-Darboux formula relating
the sum of products of associated Legendre functions. Several variants have been
developed including [Holmes et al. 1996; Yarvin and Rokhlin 1998]. The study
in [Spotz and Swarztrauber 2001] proposes several other algorithms and concludes
that the Weighted Orthogonal Complement(WOC) algorithm developed in [Swarz-
trauber and Spotz 2000] is the most efficient in terms of operation count, cache
utilization and overall performance for the resolutions studied. This algorithm for
Legendre projection is faster than the multipole projection method in its known
implementations to date.

5.4 Operation Counts and Parallel Algorithm Performance Model

A performance model of the parallel spectral transform can be developed to estimate
the time for a multi-level calculation. The computational operation counts and
communication cost estimates are based on a model in [Foster and Worley 1997]
for a one dimensional decomposition and modified by Rich Loft (NCAR) to reflect
a simple transpose between FFT and Legendre transform phases including vertical
levels. The time for the FFT, the Legendre transform and the communication
overhead are estimated using machine-dependant rate constants a,b,d, and e.

Time for FFT = 5a(6L+ 1)IJ log2(I)
Time for LT = 2b(6L+ 1)JM2

Time in COMM = dP + 2e(6L+ 1)J(2M + 1)
Nomenclature:

M wave number resolution, eg. TM
I number of longitudes (I ≥ 3M + 1 )
J number of latitudes (J = I/2)
L number of vertical levels
P number of nodes (computational unit doing FFT or LT)
a computational rate of FFT in flops/node
b computational rate for LT in flops/node
d latency factor
e bandwidth factor

Using this model with estimates of network bandwidth and the speed of a node
in computing FFTs and Legendre transforms, we can project the overall, sustained
computational rate of a computer for performing spherical harmonic transforms.
Refinement of the performance model requires an experimental determination of the
a,b,d, and e parameters. This can be done with kernel tests or by fitting performance
data. Figure 5 shows the system balance required to sustain a petaflop performance
on the spherical harmonic transform. The balance of latency (nanoseconds), band-
width (GigaBytes per second) and computational performance (GigaFlops/sec) on
the Legendre transform and FFTs, required by three systems is illustrated using
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spherical harmonic transforms for an atmospheric model with 96 levels at the T1279
resolution using 1920 processing nodes. In this figure, what is striking is that the
balance is so sensitive to latency and bandwidth of the nodal interconnect. Improv-
ing the latency, from the yellow machine with a latency of 1 microsecond, to the
blue machine with a latency of 0.5 microseconds, reduces the need for computa-
tional speed and bandwidth significantly. If bandwidth cannot be obtained above
500 GB/s (the purple machine), then computational speed of the nodes must be 1
Tflop in order to achieve a sustained petaflop.

6. CONCLUSIONS

A set of algorithms and MATLAB classes for computing spherical harmonic trans-
forms was described. This set of classes enables a number of algorithmic studies and
computational experiments important for the development of weather and climate
models on high performance computers. The typical use of the spectral transform
is illustrated using the differential operator methods of these classes to solve the
barotropic vorticity equation.
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