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A collection of MATLAB classes for computing and using spherical harmonic transforms is
presented. Methods of these classes compute differential operators on the sphere and are used
to solve simple partial differential equations in a spherical geometry. The spectral synthesis and
analysis algorithms using fast Fourier transforms and Legendre transforms with the associated
Legendre functions are presented in detail. A set of methods associated with a spectral field class

provides spectral approximation to the differential operators ∇·, ∇×, ∇, and ∇2 in spherical geom-
etry. Laplace inversion and Helmholtz equation solvers are also methods for this class. The use
of the class and methods in MATLAB is demonstrated by the solution of the barotropic vortic-
ity equation on the sphere. A survey of alternative algorithms is given and implementations for
parallel high performance computers are discussed in the context of global climate and weather
models.
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1. INTRODUCTION

The spherical harmonic transform is a critical computational kernel of the
dynamics algorithms for numerical weather prediction and climate modeling.
The announcement of sustained rates of 26.5 Tflops on the Japanese Earth
Simulator (ES40, with NEC SX-6+ nodes) for an atmospheric simulation moti-
vated a study of algorithmic options implementing spectral transforms and led
to the development of this set of MATLAB classes to facilitate the study of
alternative algorithms. The paper [Shingu et al. 2002] that won the 2002
Gordon Bell Award in Supercomputing used the full 640 nodes of the Japanese
Earth Simulator with an atmospheric general circulation model (the AFES
code) with a multi-level spectral transform algorithm. The dynamics part of
the calculation accounted for 62% of the total time with the Legendre trans-
form alone accounting for 51.8%. The columnar physics calculations that
balance radiation and moist atmospheric processes only used 12% of the total
run-time. The spectral resolution reported was a triangular truncation (T1279)
with 96 levels on a 3840 × 1920 horizontal grid. This is high resolution (10km)
for a weather prediction model and ultra-high for a climate model, which must
be integrated in time for years instead of days. The horizontal resolution typi-
cally used for climate simulations in the U.S. research community is T85 with
26 vertical levels, which requires a 256 × 128 horizontal grid [Drake et al.
2005; Worley and Drake 2005]. The parallel algorithm used for these high res-
olution studies and benchmarking was given in Foster and Worley [1997]. The
FFT algorithm used was given in Temperton [1983], a Fortran code specifically
designed for vector computation of multiple blocked fast Fourier transforms.

The spatial resolution of a spectral model is referred to as a truncation
and specifies the number of spectral modes retained in the representation of
a scalar field. Spectral methods have been applied to a wide range of fluids
problems and the theory of their application is given in Canuto et al. [1991].
For flows in a global domain, the prefered basis set for approximation of func-
tions on the sphere is the spherical harmonic basis. The spherical harmonic
transform is used to project grid point data on the sphere onto the spectral
modes in an analysis step and an inverse transform reconstructs grid point
data from the spectral information in a synthesis step. The synthesis step is
described in Equation (1). The analysis step is described by Equations (2) and
(3) consisting of the computation of the Fourier coefficient ξm and the Legen-
dre transform that incorporates the Gaussian weights corresponding to the
Gaussian latitudes µ j = sin(θ j).

ξ (λ,µ) =
M

∑

m=−M

N(m)
∑

n=|m|
ξm

n Pm
n (µ)eimλ, (1)
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ξm
n =

J
∑

j=1

ξm(µ j)Pm
n (µ j)w j, (2)

ξm(µ j) =
1

I

I
∑

i=1

ξ (λi, µ j)e
−imλi. (3)

For a Gaussian grid the triangular spectral truncation requires the number
of longitudes I ≥ 3M + 1, and number of latitudes J = I/2, where M refers
to the modal truncation number. In what follows we will assume a triangular
truncation, though extension to other truncations is straightforward.

As atmospheric models push toward higher horizontal resolution, the algo-
rithms used for the spectral transform are of interest and it is useful to have
MATLAB implementations for testing and exploration of these algorithms.
In this article, MATLAB classes are presented that implement the spherical
harmonic transform along with methods based on the spectral method for ap-
proximating the standard differential operators in spherical geometry. The use
of these classes and methods is illustrated by solving the barotropic vorticity
equation on a sphere. A survey of alternative methods and a discussion of
parallel algorithms on high performance computers concludes the study.

2. FORMULATION OPTIONS

2.1 BLAS Formulation

The recommended software package for the spherical harmonic transforms
is SPHEREPACK [Adams and Swarztrauber 1999], a set of Fortran routines
developed at the National Center for Atmospheric Research (NCAR). Another
toolkit of Fortran routines is available from Wieczorek [2007]. For MATLAB
computations, it is always possible to link with compiled routines using mex

files. But there is an advantage in having native MATLAB code for exploring
algorithms and testing performance. There are several collections of spheri-
cal harmonic routines currently available through the MATLAB software ex-
change [Kelbert 2007] but none offer methods for differential equations. The
paper Simons et al. [2006], is a good reference for methods and algorithms
using other spherical approximation methods.

The spherical harmonic transform can be formulated in terms of matrix
operations. This follows from the fact that it is a linear transformation of
one basis representation to another. Since the Fourier transform calculation
is most efficiently organized with the FFT algorithm, what we describe here
is a matrix formulation for the Legendre transform. A generalization to non-
Gaussian grids is also possible as reported in Swarztrauber and Spotz [2000].
For high performance hardware, the efficiency of specialized matrix operations
is well known and forms the basis of the LINPACK benchmark [Dongarra
2007]. The Basic Linear Algebra Subroutines (BLAS) have been optimized
by most vendors and offer near peak rates. Since the Legendre transform can
be expressed in matrix form we are led to explore the possibility of using BLAS
routines for the computational kernel of the spherical harmonic transform.
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The performance study [Shingu et al. 2002] considered inner and outer prod-
uct formulations with specific attention to vectorization, but did not use a
BLAS approach. In an unpublished study, Li [personal communication] de-
scribed the principal sums that form the Legendre transform in the synthe-
sis and analysis phases and determined a dense matrix formulation that took
advantage of the symmetry of the associated Legendre functions. The principal
sum for the synthesis phase is:

sm
j =

N(m)
∑

n=m

ξm
n Pm

n (µ j) , (4)

where the ξm
n is the spectral coefficient of a field. The principal sum of the

analysis phase is:

ξm
n =

J
∑

j=1

sm
j Pm

n (µ j) , (5)

where the sm
j = w jξ

m(µ j) represents the product of the Gauss weight and the
m-th Fourier coefficient at latitude j.

The matrix-matrix multiplications representing these sums require some
additional notation. Let

Pm =

















Pm
m(µ1) Pm

m+1(µ1) . . . . . . Pm
N(m)(µ1)

Pm
m(µ2) Pm

m+1(µ2) Pm
N(m)(µ2)

...
. . .

...
...

. . .
...

Pm
m(µJ/2) Pm

m+1(µJ/2) . . . . . . Pm
N(m)(µJ/2)

















(6)

be the matrix of associated Legendre functions for mode m at half of the Gauss
points. Since Legendre functions are symmetric about the equator and the
Gauss points are anti-symmetric, the algorithm does not require computation
of the functions at all the points. The operative identities are:

Pm
n (µJ+1− j) = Pm

n (−µ j) = (−1)n−mPm
n (µ j). (7)

Introducing a vector notation for the spectral coefficients,

xm =











ξm
m

ξm
m+1
...

ξm
N(m)











(8)
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and

x̃m =











ξm
m

−ξm
m+1
...

(−1)N(m)−mξm
N(m)











, (9)

the first principal sum can be represented in a matrix-matrix multiplication
formulation as:











sm
1 sm

J

sm
2 sm

J−1
...

...
sm

J/2 sm
J/2+1











= Pm[xmx̃m]. (10)

In this equation the sm
j ’s and the ξm

n ’s are complex, while the P matrix is
real. Computational performance may be enhanced by explicitly separating
the complex vectors into real and imaginary parts, forming input and output
matrices with four columns instead of two. The inverse transform (analysis
phase) involves two steps. First, a matrix-matrix multiply step uses the trans-
pose of the Legendre matrix,











τm
1 τ̃m

J

τm
2 τ̃m

J−1
...

...
τm

J/2 τ̃m
J/2+1











= (Pm)T











sm
1 sm

J

sm
2 sm

J−1
...

...
sm

J/2 sm
J/2+1











. (11)

The intermediate quantities, τm
n and τ̃m

n , are then used to compute the spectral
coefficients,

ξm
n = τm

n + (−1)n−mτ̃m
n . (12)

The formulation has been implemented in MATLAB, where the fast BLAS
from LAPACK [Anderson et al. 1999] are available when matrix notation is
used. This allows us to test the formulation as well as the assumptions of
advantage with specialized library routines. The MATLAB code and class
structure used to express the formulation are described in Section 3.

By timing the computational portions of the transforms, we note that a
considerable amount of time is spent in packing and unpacking Fourier and
spectral coefficients and very little in the matrix multiply and FFT. Both of
these computational steps are highly optimized in MATLAB, using FFTW for
the FFTs and LAPACK [Anderson et al. 1999] for the matrix multiply. This
is very similar to the situation with using math libraries on supercomputers
since these are highly optimized but may in fact require incompatible storage
orders.

2.2 Open Loop Formulation

A formulation that does not require explicit data movement to accommodate
special purpose routines leaves much to the compiler. A good compiler will
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recognize BLAS constructs and take appropriate action depending on the size
of loops, and so on.

The basic computational loops in (4) and (5) are the same, but we split them
to exploit the symmetry of the Legendre functions. This is done by partitioning
into odd and even modes. The first sum can be written in two parts for (1 ≤
j ≤ J/2),

sm
j =

N(m)
∑

n=m

ξm
n Pm

n (µ j) , (13)

and

sm
J+1− j =

N(m)
∑

n=m,2

ξm
n Pm

n (µ j) −
N(m)
∑

m+1,2

ξm
n Pm

n (µ j). (14)

The second sum is represented in different ways when (n − m) is odd or even,

ξm
n =

J/2
∑

j=1

(sm
j + sm

J+1− j)Pm
n (µ j), mod2(n − m) = 0, (15)

ξm
n =

J/2
∑

j=1

(sm
j − sm

J+1− j)Pm
n (µ j), mod2(n − m) = 1 . (16)

See Algorithms 3.3 and 3.4 for MATLAB implementations of the open loop
formulation.

2.3 Legendre Functions On-the-Fly Formulation

In Spotz and Swarztrauber [2001], a four term recursion is given for comput-
ing the normalized associated Legendre functions. Since the recursion can be
applied to an entire column of the Pm matrix with vector operations, it may be
advantageous to compute the functions on the fly. This has the added advan-
tage of reducing the storage required for the spectral transform from O(M3) to
O(M2).

The normalized associated Legendre functions are defined by:

Pm
n (θ ) ≡ 1

2nn!

√

(2n + 1)(n − m)!

2(n + m)!
cosm(θ )

dn+m

dµn+m
(µ2 − 1)n, (17)

where µ = sin θ . The four-term recursion starts from precomputed and stored
values of the matrices P0 and P1. Denoting a single column of the Pm matrix
by

EPm
n =







Pm
n (µ1)

...
Pm

n (µJ/2)






, (18)
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the recursion in [4, equation D.1] is given by:

EPm+1
n+1 =

1

an+m+1
(bnan+m+1

EPm−1
n−1 − an−m+1

EPm−1
n+1 + bnan−m−1

EPm+1
n−1 ). (19)

The coefficients of the recursion are given explicitly by an =
√

n(n + 1) and

bn =
√

(2n+3)
(2n−1) . Using this recursion, the columns of the other matrices can

be computed using vector operations. These can be computed on the fly as part
of the m-loop of the Legendre transforms in either formulation. Since the re-
cursion can be split into odd and even modes it fits well with the open loop
formulation without requiring either duplicate computation or intermediate
storage.

A discussion of performance of these options on vector and scalar processors
is given in D’Azevedo [2004].

3. MATLAB SPHERICAL HARMONIC CLASSES

The MATLAB programming language supports object-oriented programming
by specifying a user class directory. The subdirectory is usually called
my classes. The software for spherical harmonic transforms described in
this article can be added to a users directory and used to extend MATLAB’s
functionality. The classes are included in the my classes subdirectory with
the folder naming convention @class name. Following ESMF style conven-
tions [Collins et al. 2005], the methods and data structures for the spectral
transform fall into two classes: the @gauss grid and the @spectral field. The
@gauss grid class defines the evenly spaced longitudinal points and the latitu-
dinal points corresponding to the Gauss points of the spherical grid. In addi-
tion, the geometric information, such as the radius of the sphere and the values
of the associated Legendre functions at the points is stored. The standard get,
set and display methods are provided. In the private methods are grule, which
calculates the Gauss points and weights, and shtraninit, which computes the
Pm matrix to initialize the spherical harmonic transform. The initialization of
an @gauss grid object specifies the number of latitudinal points, nj. A triangu-
lar truncation of the spectral coefficients is assumed, so for example, if nj = 32,
the spectral transform is initialized for T21 spectral fields.

Spherical harmonic transforms act on fields that are defined on spherical
Gaussian grids. The @spectral field class defines such a field. The analysis
method that computes spectral coefficients from grid point values of a field, is
shtrana. The inverse transform (synthesis), that computes grid point values
from given spectral coefficients, is called shtrans. The Legendre transforms
(forward and backward) are private methods. Algorithmic options such as pre-
viously discussed, may be included here, but the default is the open loop for-
mulation. The MATLAB complex FFTW is used by the shtrana(s) methods to
compute the real transforms. In addition to the basic set, get, and display meth-
ods, a variety of differential operators are implemented. The method library
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that uses spherical transforms to discretize differential operators in spherical
geometry includes:

div—the spherical (horizontal) 1
a

[

1
1−µ2

∂U
∂λ

+ ∂V
∂µ

]

divergence operator, ∇·

curl—the curl operator, k · ∇× 1
a

[

1
1−µ2

∂V
∂λ

− ∂U
∂µ

]

grad—the spherical (horizontal)
(

1
a
∂
∂λ
,

1−µ2

a
∂
∂µ

)

gradient operator, ∇
del2—the spherical (horizontal) 1

a2

[

1
1−µ2

∂2

∂λ2 + ∂
∂µ

(

(1 − µ2) ∂
∂µ

)]

Laplacian operator, ∇2 = 1

del2inv—the inverse Laplacian 1−1

operator (Laplace equation
solution)
helmholtz—the solution of k2g + ∇2g = f

Helmholtz equation
UVinv—the inversion operator
for the vorticity, divergence and
velocity

To calculate the divergence of (U,V) the spectral coefficients are summed

with the derivative, Hm
n = (1 − µ2)

dPm
n

dµ
of the spherical harmonic, according to

the formula:

div(U,V)m
n =

1

a

J
∑

j=1

[

imUm(µ j)Pm
n (µ j) − Vm(µ j)H

m
n (µ j)

] w j

(1 − µ2
j )
. (20)

The Um denotes the Fourier coefficient of the U = ucos θ field. Note that nor-
mally multiplication by cos θ is necessary so that the vector field is differen-
tiable at the poles. All FFTs are computed in MATLAB using the native rou-
tines. This leads to some inefficiency due to use of complex transforms for real
fields (see Exercise 3.6 of Trefethen [2000]).

The curl of (U,V) is calculated in spectral space from the formula:

curl(U,V)m
n = −1

a

J
∑

j=1

[

imVm(µ j)Pm
n (µ j) + Um(µ j)H

m
n (µ j)

] w j

(1 − µ2
j )
. (21)

The gradient operator is not invariant under choice of coordinate system.
The operator is calculated in the (λ,µ) system as:

∇(λ,µ)φ =

(

1

a

∂φ

∂λ
,

1 − µ2

a

∂φ

∂µ

)

. (22)
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To convert to θ -coordinates we have ∇(λ,µ) = cos θ∇(λ,θ ). The computation
of the components uses the Legendre synthesis with H rather than P in the
summation of cofficients.

{

1

a

∂φ

∂λ

}m

n

=
1

a

∑

m

∑

n

imφm
n Pm

n (µ)eimλ (23)

and
{

1 − µ2

a

∂φ

∂µ

}m

n

=
1

a

∑

m

∑

n

φm
n Hm

n (µ)eimλ. (24)

Note that the first component computation could be done in Fourier space.
Similarly the Laplacian is calculated in spectral space using the eigenfunc-

tion relationship for the operator with the spherical harmonics,

∇2ψ
m

n = −n(n + 1)

a2
ψm

n . (25)

This relation is inverted for the solution of Laplace’s equation using del2inv. A
similar derivation applies for the Helmholtz equation.

The inversion of the (U,V) relationship with vorticity, ξ = k · ∇×v, and
divergence, δ = ∇·v, is given by the sums,

U(λi, µ j) = −
M

∑

m=−M

N(m)
∑

n = |m|
n 6= 0

a

n(n + 1)

[

imδm
n Pm

n (µ j) − ξm
n Hm

n (µ j)
]

eimλi ,

V(λi, µ j) = −
M

∑

m=−M

N(m)
∑

n = |m|
n 6= 0

a

n(n + 1)

[

imξm
n Pm

n (µ j) + δm
n Hm

n (µ j)
]

eimλi .

A test method is provided along with a rudimentary plot method for spectral
fields as a unit test for each method of the spectral field class. Initialization of
a spectral field requires a previous gauss grid object. The get and set methods
can be used to initialize the grid point values or the spectral coeffecients. The
plots in Figure 1 are from the test method using field values of the spherical
harmonic, Y7

3 (λ, θ ). These plots show values of Y7
3 on the sphere along with a

plot of the error in transforming the field values into spectral space, performing
the backwards transformation and forming the difference. Errors are less than
10−14, indicating an accurate double precision computation. To invoke the test

method from MATLAB requires that the user my classes subdirectory be added
to the MATLAB path and that a gauss grid and spectral field are initialized.
For example,

% addpath ~/Matlab/my_classes

% G = gauss_grid(’T42’,64);

% f = spectral_field(’test function’,G);

% test(f);
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Fig. 1. MATLAB output from test showing the spherical harmonic function Y3
7 and the error, a

forward and backward transform.
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MATLAB will use optimized versions of BLAS if certain environment vari-
ables are set when MATLAB is invoked. To take maximum advantage of the
matrix formulation, an alias may be useful to set these environment variables.
For example,

alias matlab=’export BLAS_VERSION=atlas_P4.so;

export LD_ASSUME_KERNEL=2.3.98;

/usr/share/linux.x86/Matlab6/bin/matlab’

Vectorized versions for MATLAB of the Legendre open loop formulations are
included in the software.

To illustrate the coding style, Algorithm 3.1 and Algorithm 3.2 are pro-
grams for the spherical harmonic analysis and synthesis as implemented in
MATLAB. Algorithms 3.3 and 3.4 are examples of the private methods of the
spherical harmonic field class that implement the open loop formulation of the
Legendre transform.

ALGORITHM 3.1. Spectral Analysis

function f = shtrana(f)
% SHTRANA Spectral analysis of a spectral grid field
% Compute the spectral coefficients from the field grid
% point values using a spherical harmonic transform analysis
%——————————————————–
% Input:
% f - spectral field class object
% In particular:
% f.gp - field grid point values
% f.G - field gauss grid
% Method of spectral field class: Sept 2005
%—-—–—–—–————-—————-

ni = get(f.G,’ni’); nj = get(f.G,’nj’);
mm = get(f.G,’mm’); nn = get(f.G,’nn’); kk = get(f.G,’kk’);
wg = get(f.G,’wg’); P = get(f.G,’P’); gp = get(f,’gp’);

%——————————————————–
xf =fft(gp,ni)/ni; %note normalization for MATLAB FFT

%order ni= 2n real transform coming out as r0,r1,r2...i2,i1
%multiply Fourier coefficients by the Gauss weights

for j=1:nj
xf(:,j)=wg(j)*xf(:,j);

end
f.sc = legtranOLa(xf,nj,mm,nn,kk,P); % inverse Legendre
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ALGORITHM 3.2. Spectral Synthesis

function f = shtrans(f)
% SHTRANS Spectral synthesis to a spectral grid field
% Compute the grid point values from the spectral coefficients using
% a spherical harmonic transform synthesis
%——————————————————–
% Input:
% f - spectral field class object
% In particular:
% f.gp - field grid point values
% f.G - field gauss grid
% Output:
% f.sc - Output array of complex spectral coeffiecients (n,m)
% Local
% xf - matrix of Fourier coefficients ordered (m,j)
% Method of spectral field class: Sept 2005
%—-—–—–—–—————————–

ni = get(f.G,’ni’); nj = get(f.G,’nj’);
mm = get(f.G,’mm’); nn = get(f.G,’nn’); kk = get(f.G,’kk’);
wg = get(f.G,’wg’); P = get(f.G,’P’);

%——————————————————–
xf = legtranOLs(f.sc,nj,mm,nn,kk,P); % inverse Legendre transform

%make xf into a Hermitian array for real transform back
for m=1:ni/2

xf(ni-m+1,:) = conj(xf(m+1,:));
end
f.gp =real(ifft(xf,ni))*ni; % inverse Fourier transform, note normalization
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ALGORITHM 3.3. Legendre Transform Analysis - Open Loop

function x = legtranOLa(s,nj,mm,nn,kk,P)
% Compute a Legendre transform analysis
% Input:
% s - complex Fourier coeffecients ordered (m,j)
% nj = number of Gauss latitudes
% mm, nn,kk are the truncation parameters
% P - associated Legendre functions ordered (j,n,m)
% Output:
% x - matrix of spectral coefficients ordered (n,m)
%——————————————————–
% Based on Spherical harmonic transform formulation with open loops (OL)
%—-—–—–—–————————————

njo2=nj/2;
x = zeros(nn+1,mm+1);
for m=0:mm

j=1:njo2;
for n=m:2:nn

x(n+1,m+1) = x(n+1,m+1)
+ (s(m+1,j) + s(m+1,nj-j+1))*P(j,n+1,m+1);

end
for n=m+1:2:nn

x(n+1,m+1) = x(n+1,m+1)
+ (s(m+1,j) - s(m+1,nj-j+1))*P(j,n+1,m+1);

end
end
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ALGORITHM 3.4. Legendre Transform Synthesis - Open Loop

function s = legtranOLs(x,nj,mm,nn,kk,P)
% Compute a Legendre transform synthesis – OPEN LOOP formulation
% Input:
% x - complex spectral coeffecients (n,m)
% nj = number of Gauss latitudes
% mm, nn,kk are the truncation parameters
% P - associated Legendre functions ordered (j,n,m)
% Output:
% s - matrix of Fourier coefficients ordered (m,j)
%——————————————————–
% Based on Spherical harmonic transform formulation as an open loop
%—-—–—–—–—–——————————-

njo2=nj/2;
ni=2*nj;

%
s=zeros(mm+1,nj);

%
for m=0:mm

for j=1:njo2
for n = m:nn

s(m+1,j) = s(m+1,j) + x(n+1,m+1)*P(j,n+1,m+1); %first half
end
for n=m:2:nn

s(m+1,nj-j+1) = s(m+1,nj-j+1)
+ x(n+1,m+1)*P(j,n+1,m+1); %second even

end
for n=m+1:2:nn

s(m+1,nj-j+1) = s(m+1,nj-j+1)
- x(n+1,m+1)*P(j,n+1,m+1); %second odd

end
end

end

4. BAROTROPIC VORTICITY EQUATION: MATLAB EXAMPLE

To demonstrate the use of the spectral transform in dynamics equations for
the atmosphere, the simplest setting is a barotropic vorticity equation. The
velocity is related to a horizontal stream function by v = k × ∇ψ. This stream
function is calculated by inverting the elliptic equation:

∇2ψ = ξ, (26)

where ξ is the (absolute) horizontal vorticity, ξ = k · ∇×v. The governing
equation of motion is given in terms of the potential vorticity:

dη

dt
= 0. (27)

ACM Transactions on Mathematical Software, Vol. 35, No. 3, Article 23, Pub. date: October 2008.



Algorithm 888: Spherical Harmonic Transform Algorithms · 23: 15

The potential vorticity is related to the absolute vorticity by η = ξ + f , where
f = 2� sin θ is the Coriolis term. The potential vorticity equation is written in
advective form with the material derivative:

dη

dt
≡ ∂η

∂t
+ v · ∇η. (28)

The time integration algorithm directly treats the material derivative op-
erator using a semi-Lagrangian transport scheme. Particle tracking to deter-
mine departure points uses the MATLAB @slt grid class, which extends the
Gaussian grid with extra halo points for interpolation methods.

The barotropic vorticity solution algorithm also follows the ESMF style
[Collins et al. 2005] specification of a gridded component model with begin,

run, finalize steps. In brief, the solution algorithm is as follows:

ALGORITHM 4.1. Barotropic Vorticity Integration

Begin method
integration control initialization
gauss grid initialization
slt grid initialization
spectral field initialization (prognostic initial conditions)
spectral field initialization (diagnostic initial conditions)

Run method (loop until solution end time)
slt particle tracking and departure point calculation
slt interpolation of η at departure points
slt interpolation of right hand side at departure points
update η to new time level
UVinv invert diagnostic relation to get new velocity v

del2inv invert Laplace operator to get stream function ψ

Finalize method

The example MATLAB program BV.m integrates the barotropic vorticity
equation for three days starting from an initial Rossby-Haurwitz wave num-
ber four. The plots in Figures 2, 3,4 show the final solution after three days for
potential vorticity, stream function and velocities using a T10 spectral trunca-
tion for the gauss grid. The correct symmetries are apparent though a higher
resolution solution would better display the persistence of the wave number
four in the solution.

5. ALTERNATIVE ALGORITHMS

A number of papers propose alternative algorithms for the spherical harmonic
transform. In this section we will briefly survey these in an effort to gauge
their appropriate use for high resolution climate and weather modeling. The
possibility of replacing the transform kernel with a lower operation count
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Fig. 2. MATLAB output from BV.m barotropic vorticity example showing potential vorticity.

algorithm, or of finding a more efficient method of computation is what mo-
tivates the survey. Our conclusion is that new formulations of the larger
dynamic problem and other means of evaluating derivatives for the partial
differential equations do indeed offer more promising algorithms. These new
algorithms represent the progress in the numerical analysis of spectral meth-
ods that has occurred over the last decade but has not yet found its way into
productive use.

5.1 The Fast Spherical Harmonic Algorithms

Driscoll and Healy [1989] introduced the first exact fast spherical harmonic
transform. Subsequent refinements [Healy et al. 2003; Inda et al. 2001;
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Fig. 3. MATLAB output from BV.m barotropic vorticity example showing stream function.

Mohlenkamp 1999] have resulted in parallel versions with reasonable accu-
racy, stability, and performance. The asympototic operation count for the fast
algorithm is M2(log M)2. A crossover point for performance in comparision
with the direct method occurs at M=128 with a savings by a factor of three at
M=512. For M=1279 and other high resolution cases, the operation count of
the transform can be reduced dramatically.

An approximate fast transform has been developed using the ideas in Boyd
[1992]. The new algorithm [Suda and Takami 2002] is based on fast polyno-
mial interpolation accelerated by the Fast Multipole Method. The asymptotic
operation count is proportional to M2 log M, an improvement on the Driscoll
and Healy algorithm. The crossover point with the direct method is observed
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Fig. 4. MATLAB output from BV.m barotropic vorticity example showing velocity field.
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at M=512. A speedup factor of 1.8 is observed at M=1365. Another approxi-
mate method with an O(M2 log M) operation count is proposed in Rokhlin and
Tygert [2006].

5.2 FFT2D Derivative Evaluations

The main use of the spectral method is in the highly accurate and efficient rep-
resentation of differential terms in numerical approximations to partial differ-
ential equations. For the flow equations of the atmosphere used in weather and
climate modeling, the spherical harmonic spectral representation leads to di-
agonal forms for the Laplacian operator. The solution to a Helmholtz equation
is the critical step in a semi-implicit time discretization that effectively filters
gravity waves and stablizes long time integrations. The spectral methods of-
fer an important advantage for the solution of this Helmholtz equation over
more standard grid point (finite difference, control volume, and finite element)
methods.

An alternative way to evaluate the differential terms uses a 2-D (lon-lat)
FFT where the latitude direction is taken on great circles. The paper Spotz
et al. [1998] studies Merilee’s pseudospectral model and finds a FFT-based
algorithm that exactly matches results from a spherical harmonic transform
model. The evaluation of derivatives can be accomplished with I2 log I opera-
tions. The argument is made that, with the addition of a fast projection algo-
rithm to ensure all modes remain in the spherical harmonic space, the FFT2D
based model is the fastest spherical harmonic algorithm. This method was
coupled with two and three level semi-Lagrangian time-stepping methods for
a very efficient, high order solution algorithm [Layton and Spotz 2002]. The
key new element that makes these algorithms attractive is the existence of a
fast spherical harmonic projection that stabilizes the Fourier method.

5.3 Fast Spherical Harmonic Projection Algorithms

The projection of a function onto the spherical harmonic modes (analysis) fol-
lowed by the inverse transformation back to grid point space is a filter of the
original function. If there is no need to use the spectral coefficients to evaluate
derivatives, then the forward and inverse transforms can be combined alge-
braically to produce an explicit projection operator. Several algorithms have
been studied in Spotz and Swarztrauber [2001] and compared in single proces-
sor and parallel implementations.

An interesting method for evaluating the projection utilizes a fast multi-
pole method. The multipole projection was proposed as an approximate, fast
projection method. It is based on an application of the Christoffel-Darboux
formula relating the sum of products of associated Legendre functions. Sev-
eral variants have been developed including Holmes et al. [1996] and Yarvin
and Rokhlin [1998]. The study in Spotz and Swarztrauber [2001] proposes
several other algorithms and concludes that the Weighted Orthogonal Com-
plement (WOC) algorithm developed in Swarztrauber and Spotz [2000] is
the most efficient in terms of operation count, cache utilization and overall

ACM Transactions on Mathematical Software, Vol. 35, No. 3, Article 23, Pub. date: October 2008.



23: 20 · J. B. Drake et al.

performance for the resolutions studied. This algorithm for Legendre projec-
tion is faster than the multipole projection method in its known implementa-
tions to date.

5.4 Operation Counts and Parallel Algorithm Performance Model

A performance model of the parallel spectral transform can be developed to
estimate the time for a multi-level calculation. The computational operation
counts and communication cost estimates are based on a model in Foster and
Worley [1997] for a one dimensional decomposition and modified by Rich Loft
(NCAR) to reflect a simple transpose between FFT and Legendre transform
phases including vertical levels. The time for the FFT, the Legendre transform
and the communication overhead are estimated using machine-dependant rate
constants a,b ,d, and e.

Time for FFT = 5a(6L + 1)IJlog2(I)
Time for LT = 2b (6L + 1)JM2

Time in COMM = dP + 2e(6L + 1)J(2M + 1)
Nomenclature:

M wave number resolution, eg. TM

I number of longitudes (I ≥ 3M + 1 )
J number of latitudes (J = I/2)
L number of vertical levels
P number of nodes (computational unit doing FFT or LT)
a computational rate of FFT in flops/node
b computational rate for LT in flops/node
d latency factor
e bandwidth factor

Using this model with estimates of network bandwidth and the speed of a
node in computing FFTs and Legendre transforms, we can project the overall,
sustained computational rate of a computer for performing spherical harmonic
transforms. Refinement of the performance model requires an experimental
determination of the a,b ,d, and e parameters. This can be done with kernel
tests or by fitting performance data. Figure 5 shows the system balance re-
quired to sustain a petaflop performance on the spherical harmonic transform.
The balance of latency (nanoseconds), bandwidth (GigaBytes per second) and
computational performance (GigaFlops/sec) on the Legendre transform and
FFTs, required by three systems is illustrated using spherical harmonic trans-
forms for an atmospheric model with 96 levels at the T1279 resolution using
1920 processing nodes. In this figure, what is striking is that the balance is so
sensitive to latency and bandwidth of the nodal interconnect. Improving the
latency, from the yellow machine with a latency of 1 microsecond, to the blue
machine with a latency of 0.5 microseconds, significantly reduces the need for
computational speed and bandwidth. If bandwidth cannot be obtained above
500 GB/s (the purple machine), then the computational speed of the nodes
must be 1 Tflop in order to achieve a sustained petaflop.
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Fig. 5. System balance required for a sustained petaflop calculating T1279 transforms on 1920
processing nodes. Each closed figure represents a machine configuration that would sustain a
petaflop on the parallel spherical harmonic transform. The low bandwidth of the purple machine
requires higher FFT and LT performance per node than the blue machine. Similarly, the high
latency of the yellow machine requires higher bandwidth than the purple or blue machines.

6. CONCLUSIONS

A set of algorithms and MATLAB classes for computing spherical harmonic
transforms was described. This set of classes enables a number of algorith-
mic studies and computational experiments important for the development of
weather and climate models on high performance computers. The typical use
of the spectral transform is illustrated using the differential operator methods
of these classes to solve the barotropic vorticity equation.
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