
187PERFORMANCE PORTABILITY IN CAM

PERFORMANCE PORTABILITY IN THE
PHYSICAL PARAMETERIZATIONS OF
THE COMMUNITY ATMOSPHERIC
MODEL

Patrick H. Worley
John B. Drake
COMPUTER SCIENCE AND MATHEMATICS DIVISION, OAK
RIDGE NATIONAL LABORATORY, TN 37831-6016, USA
(WORLEYPH@ORNL.GOV)

Abstract

Community models for global climate research, such as
the Community Atmospheric Model, must perform well on
a variety of computing systems. Supporting diverse
research interests, these computationally demanding
models must be efficient for a range of problem sizes and
processor counts. In this paper we describe the data
structures and associated infrastructure developed for the
physical parameterizations that allow the Community
Atmospheric Model to be tuned for vector or non-vector
systems, to provide load balancing while minimizing com-
munication overhead, and to exploit the optimal mix of
distributed Message Passing Interface (MPI) processes
and shared OpenMP threads.

Key words: performance portability, atmospheric mode-
ling, high-performance computing

1 Introduction

Atmospheric global circulation models are characterized
by two computational phases: the dynamics, which
advances the evolution equations for the atmospheric
flow, and the physics, which approximates subgrid phe-
nomena such as precipitation processes, clouds, long-
and short-wave radiation, and turbulent mixing (Collins
et al., 2004). The approximations in the physics are
referred to as the physical parameterizations. Control
moves between the dynamics and the physics at least
once during each time step advancing the model simula-
tion time. The number and order of these transitions
depend on the numerical algorithm.

In the spring of 2000, a group of atmospheric scientists
and computer scientists met at the National Center for
Atmospheric Research (NCAR) to outline the design of
the Community Atmospheric Model (CAM; Collins et al.,
2004), the proposed successor to the Community Climate
Model (CCM; Hack et al., 1992; Kiehl et al., 1998). One of
the decisions made at this meeting was that CAM would
support multiple “dynamical cores” (dycores) using one
set of physical parameterizations. Three dycores were tar-
geted: the spectral Eulerian solver used in CCM, a spec-
tral semi-Lagrangian solver (Williamson and Olson, 1994),
and a finite volume semi-Lagrangian solver (Lin, 2004).
While all three dycores use tensor product longitude–lati-
tude grids, they do not use the same grids, have the same
placement of variables on the grid, or support the same
domain decompositions in their parallel implementations.
Moreover, the expectation was that dycores would be sup-
ported in the future that do not use longitude–latitude grids.
An explicit interface was defined between the dynamics
and the physics, and the physics data structures and paral-
lelization strategies were no longer required to be identi-
cal with those used in the dynamics. Instead, a dynamics–
physics coupler (dp_coupling) would be used to move
data between data structures representing the dynamics
state and the physics state. In previous work (Drake et al.,
1995, 1999; Foster et al., 1996; Foster and Worley 1997),
significant effort has been expended to determine data
structures and domain decompositions that work well
with both the dynamics and the physics, in order to mini-
mize memory requirements, to avoid the cost of buffer
copies, and/or to avoid the cost of interprocess communi-
cation when execution moves between the dynamics and
the physics during each time step of the algorithm. With
the decision to decouple physics and dynamics data struc-
tures, a global design was no longer necessarily advanta-
geous. Developers were free to optimize performance
within the physics, and to investigate a number of different
approaches to minimizing the overheads introduced by the
decoupling of the physics and dynamics data structures.

This paper begins with a description of the design and
implementation of the physics data structures and associ-

The International Journal of High Performance Computing Applications,
Volume 19, No. 3, Summer 2005, pp. 187–201
DOI: 10.1177/1094342005056095
© 2005 Sage Publications

188 COMPUTING APPLICATIONS

ated parallel algorithms used in CAM. It then describes
the performance that we have observed. One of the
important features of the design has been support for
compile- and run-time tuning of the physics data struc-
tures, improving the ability to port and to optimize the
performance of the model on different architectures and
for different problem sizes and processor counts (i.e.
improving the performance portability of the code).

2 Design

We refer to all grid points in a three-dimensional grid
with a given horizontal location, thus differing only in
the vertical coordinate, as a vertical column, or just col-
umn. The current physical parameterizations in CAM are
based on vertical columns, with dependences in the verti-
cal direction only, and computations are therefore inde-
pendent between columns.

The data structures used in the original CCM physics
are identical to the data structures used in the spectral
Eulerian dynamics, and target efficient performance on
vector machines (Kiehl et al., 1996). The CCM computa-
tional domain is a tensor product (longitude × latitude ×
vertical) grid covering the sphere. To exploit the vectori-
zation possibilities, the CCM data structures define the
domain as (nlond, nver, nlat), i.e. with the vertical
coordinate as the second index. The basic loop structure
in the physics follows the index ordering:

do j=1,nlat
 do k=1,nver
 do i=1,nlon
 (physical parameterizations)
 enddo
 enddo
enddo

Here

• nlon is the number of longitudes;
• nver is the number of vertical levels;
• nlat is the number of latitudes;
• nlond = nlon + 1 + 2 · nexpt, where nexpt defines

the size of a halo used in the semi-Lagrangian advec-
tion algorithm (Williamson and Rasch, 1989). Data are
copied into the halo to eliminate boundary condition
logic in the advection algorithm, improving perform-
ance on vector systems. nexpt is typically one, sup-
porting cubic interpolation.

Because computation in the physics is independent
between vertical columns, the inner loop over longitude
is vectorizable. Coarser grain parallelism is exploited in
the outer loop over latitude, via either Message Passing

Interface (MPI; Gropp et al., 1998) or OpenMP (Dagum
and Menon, 1998).

To exploit vectorization, it is important to bundle the
computation of multiple columns. Vectorization can also
be important in modern cache-based processor architec-
tures to expose fine-grain parallelism for long-instruction-
word architectures, improve effectiveness of memory
prefetching, and enable latency hiding for expensive
intrinsics such as exp or sqrt. However, working with
too many columns simultaneously can cause cache
misses. To support performance on both vector and non-
vector systems, we generalized the physics data structure
as a collection of (arbitrary) subsets of columns that we
call chunks. Grid points in a chunk are referenced by
(local column index, vertical index). A chunked
array is declared as (pcols, nver, nchunks) and the
loop structure is

do j=1,nchunks
 do k=1,nver
 do i=1,ncols(j)
 (physical parameterizations)
 enddo
 enddo
enddo

Here

• ncols(j) is the number of columns allocated to chunk j;
• nver is the number of vertical levels;
• nchunks is the number of chunks;
• pcols is the maximum number of columns allocated

to any chunk (specified at compile time).

Thus, pcols · nchunks nlon · nlat for a tensor-
product longitude–latitude grid, but there are no other
assumptions about the composition of a chunk. In partic-
ular, the columns bundled in a given chunk may not be
geographically contiguous. The inner loop is again vec-
torizable, and the outer loop is the MPI or OpenMP par-
allel direction. CAM is a Fortran code, so the inner loop
also runs sequentially over contiguous memory locations.
As the chunk size (pcols and ncols) decreases, the
cache locality increases and the parallelism exploitable at
the outer loop level increases. In contrast, as the chunk
size increases, the vectorization opportunities increase.
Note that the original CCM physics data structure is also
a chunk data structure where there are nlat chunks each
with nlon columns and pcols nlond. Thus, it is
possible to reproduce the original CCM parallelization
configuration using the new data structure.

This design was motivated by our previous experi-
ences in the development of PCCM (Drake et al., 1995,
1999), a research version of CCM that implemented a

≥

≡

189PERFORMANCE PORTABILITY IN CAM

two-dimensional domain decomposition of the dynamics
and physics in order to improve scalability for large proc-
essor counts, by extensive experimentation (Worley,
2000, 2002; Worley et al., 2002) using the CCM column
radiation model (CRM; see http://www.cgd.ucar.edu/
cms/crm/), and by numerous reports in the literature on
the utility of cache blocking and other cache efficient pro-
gramming techniques (e.g. Sawdey et al., 1996; Douglas
et al., 2000; Whaley et al., 2001). We were also moti-
vated by the successful introduction of a performance
tunable data structure in the Integrated Forecast System
(IFS; Barros et al., 1995), developed at the European
Centre for Medium-Range Weather Forecasting. IFS is
an atmospheric model with a spectral dycore similar to
that used in CAM. It is used for weather forecasting,
rather than climate modeling, and with much higher reso-
lution grids than are typically used with CAM. IFS per-
formance is dominated by the cost of the dynamics, in
contrast to CAM in which the physics tends to be the
dominant cost at the resolutions of interest. IFS is also a
more uniform design, without as clear a separation
between the dynamics and physics. However, the basic
data structure in IFS, NPROMA blocks, is very similar to
chunks. In the IFS, blocks are not arbitrary collections of
columns. Rather, lines of constant latitude in the two-
dimensional longitude–latitude grid are concatenated into
a one-dimensional data structure, and blocks are defined
as columns whose horizontal coordinates are contiguous
in the one-dimensional data structure. This has proven to
be a good choice for the IFS dynamics. The size of the
block, NPROMA, is then used to maximize vector lengths
or improve cache locality.

This paper deals strictly with the design of the physics
data structures. The physics/dynamics split allowed us to
develop these new data structures in relative isolation
from other changes in the model. However, the intent
was always to improve the performance of both the phys-
ics and dynamics in CAM. Significant progress has been
made in performance optimization and scalability of the
finite volume dycore (Mirin and Sawyer, 2005). We plan
on adopting the best ideas from the designs used in IFS,
PCCM, and the finite volume dycore to improve the per-
formance of the spectral dycores. As will be shown,
decoupling the performance engineering of the physics
and dynamics has not hurt the overall performance of
CAM. In our experience, it has also made the develop-
ment process less costly and easier to manage and the
code easier to maintain than earlier “monolithic” efforts
such as PCCM.

3 Implementation

The chunk generalization of the physics data structures
has many performance implications. To motivate the dis-

cussion, we first outline the logic used to define chunks
in CAM.

Most high performance computing (HPC) systems can
usefully be characterized as a cluster of symmetric multi-
processor (SMP) nodes with an interconnect linking the
nodes. This model is inclusive in that each node could be
a single processor system or the system could consist of a
single SMP node. An important feature of this characteriza-
tion is that it views the processors in a multiprocessor system
as being partitioned into subsets where communication
within a subset of processors is less expensive than com-
munication between processors in different subsets. Thus,
an essential property of the memory hierarchy is captured.

When partitioning the vertical columns into chunks,
we treat the actual parallel system as a virtual cluster of
nodes and attempt to assign a fixed number of chunks
(chunks_per_thread) to each thread of execution.
For each node in the cluster, we first determine the
number of columns assigned to the node in the domain
decomposition used in the dynamics (num_columns
(node)). We determine the number of OpenMP threads
associated with each MPI process assigned to the node,
and use this to calculate the total number of threads associ-
ated with the node (num_threads(node)). (If OpenMP
is not enabled, then each MPI process has by definition
one thread.) The number of columns in the node is
divided by pcols to determine the minimum number of
chunks for this node:

num_chunks(node) = \
 ceiling(float(num_columns(node))/pcols).

This number is increased if it is too small to assign the
required number of chunks to each thread. It may also be
increased so that the same number of chunks can be
assigned to each thread. Finally, we require that each
chunk have at least one column, which may require that
num_chunks(node) be decreased. From this infor-
mation, we determine the maximum number of columns
to assign to each chunk in the current node:

maxcol_chunk(node) = \
 ceiling(float(num_columns(node)) \
 / num_chunks(node)).

Columns are assigned to chunks so that all chunks in a
node have approximately the same computational cost.
This assignment is described in the next section. After the
chunks are defined, they are assigned to specific processes
in such a way that all threads in a node have the same
number of chunks (if possible) and the MPI communica-
tion cost when remapping between the dynamics and
physics domain decompositions is (approximately) mini-
mized. This last goal is achieved by assigning each chunk

190 COMPUTING APPLICATIONS

to a process that was assigned many of the same vertical
columns as part of the dynamics domain decomposition.

The role of the virtual cluster of nodes is to control the
amount of MPI communication required in dp_coupling.
Five options are provided currently, controlled by the run-
time parameter phys_loadbalance.

–1. Specify that each node has exactly one process.
Then the chunks assigned to a process are made
up of the same columns assigned to the process in
the dynamics decomposition, and no interprocess
communication is required.

0. Same as phys_loadbalance = –1 with respect
to the virtual architecture. This option differs from
phys_loadbalance = –1 in the way that col-
umns are assigned to chunks, as described later.

1. Specify that virtual nodes correspond to actual
nodes. If running on a cluster of single processor
nodes, this is identical to option 0. If running on a
single shared memory system, this is identical to
option 2. If running on a cluster of shared memory
systems, all interprocess comunication in dp_
coupling is restricted to communication between
processes assigned to the same node.

2. Specify that there is only one node and that all
processes are assigned to it. Then the load balanc-
ing algorithm described in the next section is free
to assign any column to any chunk, typically
requiring communication between all processes.

3. Specify that each node is assigned two processes,
defining a partition of the processes into pairs.
The chunks assigned to each process pair are
made up of the columns assigned to these proc-
esses in the dynamics decomposition. Thus, all
MPI communication in dp_coupling is limited
to processes in the same pair. There is a special
load balancing algorithm designed for this case,
also described in the next section.

Note that each of these options assumes that all the verti-
cal levels for a given horizontal location are assigned to
the same node in the dynamics decomposition. For the
current dycores, the vertical coordinate is not decom-
posed in the dynamics when calling dp_coupling,
and all five of the options work. However, this is not a
requirement. If the parallel algorithm in a future dycore
decomposes over the vertical, only option 2 will be guar-
anteed to work.

4 Load Balancing

The approach we have taken for load balancing is to
assign vertical columns to chunks so that all chunks (in a
node) have approximately the same computational cost.

If this is successful, then equidistributing the chunks to
threads (within a node) is all that is required in order to
balance the load (within a node). The algorithm used to
construct load balanced chunks is a generalization of the
load balancing algorithm used in PCCM.

Most physical processes are calculated every time
step. However, short-wave radiation, long-wave radia-
tion, and updates to the long-wave absorptivity and emis-
sivity of water vapor can be calculated less often. The
frequencies can be specified at run-time, but the default
is to treat both the short- and long-wave radiation during
the same time step once each simulation hour. We refer
to this as a “radiation” time step. Thus, if the time step is
10 min, then a radiation time step occurs every sixth time
step. For the absorptivity and emissivity update, the
default is to calculate it during a radiation time step once
every 12 h. We refer to this as an “absems” time step.

Radiation and absems time steps are much more expen-
sive than the other standard time steps. Also, the radiation
calculations, in both radiation and absems time steps, are
much more expensive for columns at horizontal locations
for which it is day during a given time step. The magni-
tude of this difference is a function of the processor archi-
tecture, but it is a major contributor to load imbalance in
CAM simulations. This will be quantified in Section 8.

To balance the load in the radiation calculation, we
partition the columns into sets of column pairs where one
column will be at a night location when the other is at a
day location. In particular, given a column with longi-
tude–latitude indices (lon,~lat), the column whose
longitude coordinate differs by 180 degrees and whose
latitude is in the opposite hemisphere but the same dis-
tance from the equator, will have the required properties.
For the current dycores, this partner column has the lon-
gitude–latitude indices

(mod((lon – 1) + (nlon / 2), nlon) + 1, \
 nlat + 1 – lat).

There are also other sources of load imbalance in the
physics that are characterized by spatial locality. These
are addressed by not assigning neighboring columns to
the same chunk. In the current implementation, a “wrap
map” is applied to columns (and their partners), assign-
ing consecutive columns to consecutive chunks, not to
the same chunk. This also has the effect of assigning the
same number of columns to each chunk, which is the
other requirement for constructing load balanced chunks
once the day–night load imbalance issue has been
addressed. The efficacy of this approach depends on the
column ordering defined in the dynamics, the problem
size, and the number of chunks.

The load balancing algorithm described above is what
is used with phys_loadbalance option 2, where all

191PERFORMANCE PORTABILITY IN CAM

processes are assigned to the same virtual node. How-
ever, the partner for a given column is not guaranteed to
be in the same node for the other options, and thus would
require communication between different virtual nodes
when moving from the dynamics domain decomposition,
which is not permitted. The second choice is to define the
partner as the column whose longitude is 180 degrees
different but at the same latitude. This choice is non-opti-
mal away from the equator because the columns in a pair
will both be day locations (night locations) simultane-
ously at some time during the model day during the sum-
mer (winter). If this second choice is not available as a
partner, column pairing is not attempted and only the
wrap map is used for load balancing.

As mentioned earlier, a special load balancing algo-
rithm is used when communication is limited to process
pairs (phys_loadbalance option 3). First, process pairs
are determined that maximize the likelihood that a column
and its partner are assigned to the same process pair in the
dynamics decomposition. The standard load balancing
algorithm is then applied to each process pair, approxi-
mating the load balancing scheme specified by phys_
loadbalance option 2, but requiring only pairwise
MPI communications. However, there is no guarantee
that the two processes in a pair are actually assigned to the
same physical SMP node, which would offset some of the
performance gains from requiring only pairwise commu-
nication. To address this issue, a modified domain decom-
position is used in the spectral dycores when specifying
phys_loadbalance = 3 that assigns columns and

their partners to successive processes. For example, for a
one-dimensional latitude-slice decomposition (decom-
posing only over the latitude dimension), if latitude lat
is assigned to process i, then latitude (nlat + 1 – lat) is
assigned to process i + 1 or i – 1. A similar approach is
being investigated for use with the finite volume dycore.

Figures 1–3 demonstrate the impact of the different
phys_loadbalance options on the distribution of
columns to processors for an example problem. The prob-

Fig. 1 Latitude-slice domain decomposition.
Fig. 2 Physics domain decomposition: option 1.

Fig. 3 Physics domain decomposition: option 2.

192 COMPUTING APPLICATIONS

lem has a horizontal longitude–latitude grid resolution of
(128 × 64). The system is a cluster of two processor nodes
of which we are using four nodes (eight processors). Proc-
essors 0–1 are on node 0, processors 2–3 are on node 1,
etc. We are not using OpenMP and there are eight MPI
processes, mapped sequentially to the processors. pcols
is set to 16, so no chunk will have more than 16 columns.
Figure 1 describes the assignment of columns to proces-
sors in the standard latitude-slice dynamics decomposi-
tion, as well as the processor color code used in all three
figures. This is also the physics domain decomposition
used when phys_loadbalance = –1 or 0. Figure 2
describes the assignment when phys_loadbalance
= 1. Note that latitude lines 1–16 are assigned to the first
two processors (first node), lines 17–32 are assigned to
processors 2 and 3 (second node), etc., and only intranode
communication (between processes 0 and 1, between 2
and 3, etc.) is required when moving from the latitude-
slice decomposition. Figure 3 describes the assignment
when phys_loadbalance = 2. Now latitude line 1 is
assigned to processors 0 and 1, latitude line 2 is assigned
to processors 2 and 3, etc. With this assignment, each
process communicates with all of the other processes
when moving from the dynamics decomposition.

5 Performance Implications

The chunk data structure as implemented in CAM has a
number of useful performance characteristics.

5.1 BACKWARD COMPATIBILITY

Assuming a latitude-slice domain decomposition in the
dynamics for one of the current dycores, CAM can be run
in essentially the same fashion as CCM by setting
pcols = nlon + 1 + 2 · nexpt, forcing ncols =nlon,
and disabling both column pairing and wrap map in the
chunk creation algorithm. This is a supported load bal-
ancing option (phys_loadbalance = –1). We will use this
to estimate the performance improvement due to chunk-
ing and load balancing in CAM. Note that memory cop-
ies still occur in dp_coupling when using this option,
but performance timers can be used to measure this cost
and subtract it from the performance estimates. This is
discussed in Section 8.

5.2 VECTORIZATION

By setting pcols larger than nlond, even longer vector
lengths can be achieved than were possible in CCM.
Note, however, that ncols will be smaller than pcols
if there are too many threads of execution. Precedence is
given to assigning equal amounts of work to all threads
over preserving long vector lengths.

5.3 MEMORY HIERARCHY

Setting pcols small enough will decrease the sizes of
chunks that would normally occur for a given problem
size and number of threads. This changes the memory
traffic patterns in the computation of a chunk. Given the
complexity of the code and the size of the auxiliary
arrays, it is unclear whether we can keep all data needed
for physics computations in cache even when setting
pcols = 1. Setting pcols too small also decreases
opportunities for data reuse. However, the amount of
memory traffic into the deeper levels of the memory hier-
archy can be controlled somewhat with pcols. The
optimal setting is determined experimentally on each tar-
get platform.

5.4 MEMORY ALIGNMENT

Experiments early in the development of the chunk data
structure indicated that compilers produce more efficient
code when the first dimension (pcols) is specified at
compile time, somewhat independent of the actual number
of columns assigned to a chunk (ncols; Worley, 2000).
pcols can also be used to control memory bank or
cache line conflicts by being set appropriately. For exam-
ple, arrays whose sizes are a power of 2 often suffer per-
formance problems. Since pcols is set at compile time,
and is independent of the problem size and number of
processors, the value can be chosen to take into account
the memory structure of the target system.

5.5 PARALLELIZATION AND
SCALABILITY

Since nchunks is (typically) a multiple of the number
of threads of execution, OpenMP parallelism can also be
exploited in the physics. OpenMP parallelism is applied
at the same level as MPI parallelism in the physics, and is
equally effective for modest numbers of threads per MPI
process on current SMP cluster architectures.

This is important because the percentage of time spent
in MPI communication can become large for large num-
bers of MPI processes on systems with slow interproces-
sor communication or when the particular MPI process
count leads to load imbalances in the dynamics. It is
sometimes not productive to use all of the MPI parallel-
ism that is available to a dycore for a given problem size.
Examples of load imbalance in the spectral dycores can
be seen in the IBM benchmarks described in Section 8,
where using fewer than the maximum number of MPI
tasks is more efficient for certain processor counts. Both
MPI and OpenMP parallelism are also used to optimize
performance when running on large IBM clusters with
the finite volume dycore (Mirin and Sawyer, 2005).

193PERFORMANCE PORTABILITY IN CAM

Efficient OpenMP parallelism in the physics is espe-
cially important when using the spectral dycores. MPI
parallelism is more efficient than OpenMP parallelism in
the spectral dycores, and little performance improvement
is gained in the spectral dycores from OpenMP parallel-
ism once MPI parallelism is exhausted. Also, the spectral
dycores are currently limited to one-dimensional domain
decompositions, which severely limits their scalability.
Because the run-time is dominated by the physics for
current problem sizes, it is often worthwhile exploiting
OpenMP parallelism when MPI parallelism is exhausted,
even though many of the processors are effectively idle
during the dynamics. This can also be seen in the IBM
benchmarks described in Section 8. (Note that the finite
volume dycore is not limited in the same fashion as the
spectral dycores. In particular, it supports a two-dimen-
sional decomposition, enabling both more MPI parallel-
ism and efficient support for OpenMP parallelism.)

5.6 LOAD BALANCING AND
COMMUNICATION COSTS

Load balancing was discussed in detail in the previous
section. Load balancing comes at the cost of communication
overhead, and the best load balancing option is sensitive
to the communication and computation characteristics of
the target system.

6 Communication Optimizations

In order for load balancing to be effective, the communi-
cation overhead in the dynamics–physics coupling needs
to be minimized. Load balancing option 3 attempts to
minimize communication overhead by limiting commu-
nication to process pairs, while option 1 limits communi-
cation to processes within the same nodes, taking
advantage of the low latency and high bandwidth typi-
cally available in shared memory implementations of
MPI. We also introduced four run-time parameters for
further tuning the communication performance: phys_
alltoall, swap_comm_order, swap_comm_
protocol, and swap_comm_maxreq.

The parameter phys_alltoall has four options
controlling interprocess communication in dp_cou-
pling.

0. Use mpi_alltoallv.
1. Use point-to-point MPI-1 two-sided commands to

exchange data between pairs of processes using
an exclusive-or ordering of the process pairs.

2. Use point-to-point MPI-2 one-sided commands to
write directly into remote memory.

3. Use Co-Array Fortran (Numrich and Reid, 1998)
to write directly into remote memory.

For phys_alltoall options 1–3, communication
occurs between processes only if there are data to
exchange. Thus, depending on how mpi_alltoallv
is implemented, options 1, 2, and 3 can be faster than
option 0 for phys_loadbalance options 1 and 3.
Note that if MPI-2 and/or Co-Array Fortran are not sup-
ported on a given platform, options 2 and 3 default to an
implementation using MPI-1 two-sided commands.

The other three run-time parameters control which of
the many MPI-1 two-sided protocols to use when
phys_alltoall = 1. More than 19 protocols are sup-
ported currently. These are generalizations of similar
algorithms used in PCCM and will not be described here.

7 Test Systems

We used the following architectures to collect perform-
ance data.

• IBM p690. 32-processor SMP. Each processor is a 1.3
GHz POWER4.

• IBM p655. 4-processor SMP. Each processor is a 1.7
GHz POWER4+.

• SGI Altix 3700. Non-uniform memory access (NUMA)
shared memory system in which two two-processor
SMPs are connected to form a C-brick, and some number
of C-Bricks are then connected to form the larger sys-
tem. Each processor is a 1.5 GHz Itanium2.

• Cray X1. 4 processor SMP. Each processor is a multi-
streaming processor (MSP) comprised of eight 32-
stage vector units running at 800 MHz, 128 64-bit
wide, 64-element deep vector registers, and four scalar
units running at 400 MHz.

Details for these architectures are summarized in
Table 1. For full application benchmarking, we used the
following systems.

• IBM p690 cluster at Oak Ridge National Laboratory
(ORNL): 27 32-processor p690 nodes and an HPS
interconnect. Each node has two two-link network
adapters.

• Cray X1 cluster at ORNL: 128 four-processor nodes.

8 Performance Results

8.1 CHUNK SIZE AND PERFORMANCE

Figure 4 describes the sensitivity of serial performance to
chunk size. CAM was run for two simulation days on a
problem with 26 vertical levels and a horizontal grid of
size (64 × 32), i.e. 2048 vertical columns. Performance
data for one simulation day were also collected and the
differences between the one-day and two-day simulation
data were examined to verify that no atypical startup

194 COMPUTING APPLICATIONS

overhead contaminated the two-day simulation data. Two
processors were used in the experiments. (MPI-enabled
CAM cannot be run on one processor, and all subsequent
experiments use MPI.) The two processes were assigned
to processors that do not share L2 caches (or L3 caches
on the Altix), and all processors sharing cache with these
two were idle.

The physics execution times for the two processes were
summed, and results for each pcols value were normal-
ized with respect to the minimum physics execution time
observed over all experiments for a given platform.
Experiments were run with both phys_load-
balance = 0 and phys_loadbalance = 2, and the
data are similar. The phys_loadbalance = 2 data are
used in Figure 4. The first graph in Figure 4 is a log–log
plot, while the second graph is a linear–linear plot. The
optimal chunk size for this experiment is pcols =8 for
the Altix, pcols = 56 for the p690, pcols = 66 for the
p655, and pcols 1026 for the Cray vector system.
Performance on the IBM systems is near optimal for any
pcols in the range of 16–200, but is degraded for values
outside this range. The optimal pcols is better defined
on the Altix, but the performance sensitivity is otherwise
similar to that observed on the IBM systems. As expected,
the Cray vector system prefers long vectors (pcols
large), but pcols cannot be set much larger than 1026
because of memory limitations. (pcols should also not
be set too much larger than the maximum ncols in a
chunk as this does not increase vector length and it
degrades memory performance.) Performance on the X1
is also sensitive to the exact value of pcols, preferring
non-power-of-2 values. Note that the IBM results also
show a performance degradation when using a large power-
of-2 value for pcols (e.g. 256, 512, 768, and 1024).

The previous experiment examined issues such as
vectorization, cache blocking, and memory alignment.
However, memory contention can also influence per-
formance. We repeated the previous experiment using all
of the processors in an IBM p690 node (32), all of the
processors in an Altix C-brick (4), and all of the proces-
sors in a Cray X1 node (4). As access to the shared levels
of the memory hierarchy change with pcols, contention
for this access between the different processes will also
change. We examined three different problem resolu-
tions: 26 vertical levels and horizontal grids of size
(64 × 32), (128 × 64), and (256 × 128), respectively. For
the IBM, we also compared the performance for 32 MPI
processes and eight MPI processes with four OpenMP
threads per process. The results for the Cray X1 and the

Table 1
Test platforms

Processor MHz L1 cache
L2 cache
(per proc.
if shared)

L3 cache
(per proc.
 if shared)

Peak processor
performance

(GFlop/s)

p690 POWER4 1300 32 KB 0.72 MB 16 MB 5.2

p655 POWER4+ 1700 32 KB 1.44 MB 32 MB 6.8

Altix Itanium2 1500 32 KB 0.25 MB 6 MB 6.0

X1 Cray MSP 800 16 KB per scalar unit 2 MB – 12.8

Fig. 4 Chunk size experiments (two processes).

≥

195PERFORMANCE PORTABILITY IN CAM

SGI Altix were unchanged. Figure 5 describes the IBM
results. Contention increases the performance sensitivity
and decreases the optimal pcols value. For these exper-
iments the optimal pcols value is between 16 and 32.

8.2 LOAD BALANCING AND
PERFORMANCE

Figure 6 illustrates the nature of the load variability for
the different types of physics time steps for a single lati-
tude. CAM was run on a problem with 26 vertical levels
and a horizontal grid of size (256 × 128) on one node (32
processors) of the IBM p690 cluster with pcols set to 16
and using 32 MPI processes. A special load balancing option

was used that is equivalent to setting phys_load-
balance = 0 but with both column pairing and wrap
map disabled. Thus, consecutive longitudes were assigned
to chunks, and no chunk contained columns from multiple
latitudes. The run-time was measured for each chunk for a
single radiation time step, for a single absmes time step,
and for three different standard time steps. Run-time for
individual columns was assumed to be one-sixteenth of
the run-time for the corresponding chunk. (The perform-
ance degradation from using pcols = 1, as shown ear-
lier, makes it difficult to measure accurately the cost
associated with individual vertical columns.)

Figure 6 contains graphs of the approximate run-time
for each column from a latitude line next to the equator,
normalized by the average run-time over all columns at

Fig. 5 Chunk size experiments (32 processors on IBM
p690).

Fig. 6 Load variability experiments (single latitude).

196 COMPUTING APPLICATIONS

the same time step and latitude. (Note that these columns
were all assigned to the same processor.) Thus, the nor-
malization is different for each time step. In the first
graph, the x-axis is the calendar hour for each column for
the indicated time step, and a given column will be at differ-
ent hours for different time steps. It is clear from this graph
that the primary source of load variability between columns
for the radiation and absorptivity–emissivity (absems) time
steps is the additional cost of calculations at day locations.
What is not obvious from this graph is that essentially all
of the variability between columns in the absems time
step is due to the radiation calculation also occurring dur-
ing this time step. The absorptivity and emissivity update
costs approximately the same for all columns.

The second graph in Figure 6 is the run-time for three
different standard time steps. The x-axis is now the longi-
tude coordinate for each column in degrees. While there
are differences in the column load variability between the
three time steps, spatial locality appears to have the
strongest correlation with the load. The variability is also
much lower than that in the radiation time step.

Table 2 indicates the cost (run-time for physics
summed over all columns in the equatorial latitude) and
frequency for the different time steps in this benchmark
problem. While the radiation time step does not dominate
the physics run-time, it is a significant part, and address-
ing the radiation load variability is important for per-
formance even for a single latitude. The importance
grows for the global problem because of the impact of
seasons on the polar latitudes.

Figures 7 and 8 show the performance impact of load
balancing on the physics. CAM was run for 30 days on a
problem with 26 vertical levels and a horizontal grid of
size (256 × 128) on four nodes (128 processors) of the
IBM p690 cluster and 32 nodes (128 processors) of the
Cray X1, both with 128 MPI processes. In Figure 7 the
simulated days were September 1–30, so seasonal differ-
ences between the hemispheres were small. In Figure 8
the simulated days were January 1–30, and seasonal dif-
ferences between the hemispheres were large. Experi-
ments were run with phys_loadbalance set to 0 and
2, and with pcols set to 16 on the p690 cluster and 258
on the X1. The run-time spent in physics for each process

is normalized by the average time over all processes for
the phys_loadbalance = 0 experiment for a given
platform. This normalized run-time is then plotted as a
function of MPI process identification number.

Figures 7 and 8 do not include the communication
overhead associated with setting phys_load-
balance = 2. However, they do indicate that this static
load balancing algorithm eliminates much of the load
imbalance seen in the physics when using a latitude-slice
decomposition, especially when seasonal imbalances are
large. Note that, despite the differences in the processor
architectures, the nature of the load imbalance and the
impact of the load balancing algorithm are very similar
on the IBM and Cray systems.

Figure 9 is a repeat of the IBM graphs in Figures 7
and 8, but with the addition of physics run-time data
from an experiment with pcols = 258 and phys_
loadbalance = –1. This figure indicates the perform-

Table 2
Cost and frequency of physics time steps for
benchmark problem on IBM p690

Standard Radiation Absems

Steps per day 120 22 2

Seconds per step 0.078 0.270 1.63

Seconds per day
(approximate)

9.36 5.94 3.26

Fig. 7 Load balancing experiments (128 processes,
September).

197PERFORMANCE PORTABILITY IN CAM

ance gain in the physics from using a more efficient
chunk size as well as load balancing on the p690.

8.3 PERFORMANCE BENCHMARKS

Our final set of experiments compares the performance
of CAM using the (empirically determined) optimal
pcols, phys_loadbalance, and phys_alltoall
settings with the performance using the physics data
structure of the original CCM. However, the data struc-
tures in the dynamics have also evolved and not all
dynamics arrays are declared with nlond. To estimate
the performance of the CCM data structures and algo-
rithms as they might have been ported into CAM, we

present the best results from using pcol = nlon,
nlon + 2, and nlon + 3, all using phys_load-
balance = –1. We also empirically determine the opti-
mal number of MPI processes and OpenMP threads per
process for each processor count for both the CCM and
optimal algorithms, presenting only the best results.

We used version 3.0.p1 of CAM, available from http://
www.ccsm.ucar.edu/models/atm-cam/, compiled with
the internal performance timers disabled. We used the
spectral Eulerian dycore, 26 vertical levels, and a hori-
zontal grid of size (256 × 128). This is the same problem
resolution and CAM dycore as used in the CCSM cou-
pled climate model (http://www.ccsm.ucar.edu/; Black-
mon et al., 2001) for the fourth Intergovernmental Panel

Fig. 8 Load balancing experiments (128 processes,
January).

Fig. 9 p690 load balancing and chunk size experi-
ments (128 processes).

198 COMPUTING APPLICATIONS

on Climate Change (IPCC) assessments (http://www.ipcc.
ch/). However, we ran with the default problem specifi-
cations, characterized by three advected constituents,
rather than the specifications used in the IPCC scenarios,
which, in addition, enable greenhouse gas and prognostic
sulfur chemistry, use prognestic sulfur in the radiative
forcing, and advect an additional eight constituents.

Optimal settings were determined using one-day and
two-day simulations. For the results presented here, run-
time was measured for a 30-day simulation, September 1–
30, ignoring time spent in model initialization. Perform-
ance is reported in terms of simulation years per wallclock
day. The results for the IBM p690 cluster and a Cray X1
system at ORNL are described in Figures 10 and 11. As
mentioned earlier, memory copies occur in dp_coupling
even when setting phys_loadbalance = –1. In sepa-
rate runs, we measured the cost of these copies and
adjusted the run-times used to calculate the CCM settings
curve accordingly. This adjustment was not significant,
however, as the cost of the copies was between 1.3% and
1.7% of the total run-time on the p690 cluster and
between 0.8% and 1.2% of the total run-time on the X1.

The optimal settings for the p690 cluster are described
in Table 3. The load balancing and chunk size optimiza-
tions result in significant performance improvements.
Both load balancing and increased serial performance
due to the smaller chunk size contribute to the perform-
ance enhancement for small processor counts. For large
processor counts, the small chunk sizes (16, 24, 32 col-
umns) increase the amount of OpenMP parallelism avail-

able compared to 256 column chunks, improving
scalability compared to runs using the CCM settings.

The optimal settings for the Cray X1 are described in
Table 4. Here, increased vector lengths and load balanc-
ing are equally important in improving performance over
that achieved using the CCM settings. Note that for 128
processors the vector lengths are identical for the optimal
and CCM settings, and the performance difference is due
to load balancing only. OpenMP parallelism was not
exploited in these runs. Partly this is because OpenMP
has not been extensively tested in the current port of
CAM to the X1. However, we do not expect OpenMP
parallelism to increase scalability much beyond 128
processors for this problem size. For example, using 256
processors, say 128 MPI processes and two OpenMP
threads per process, will halve the number of columns
per chunk to 128. This decreases the vector length of
many loops in the physics to 128, which is half the vector
length of the X1 processor. Thus, while we would be
using twice as many processors, the performance of each
processor would be approximately halved in the physics.
The port of CAM to the X1 is relatively immature, and
we expect improved vectorization in the future, which
will further emphasize the importance of preserving vec-
tor lengths.

9 Conclusions

The decision to decouple the physics and dynamics data
structures incurred copy overhead and required addi-
tional memory, but was justified by the ability to support

Fig. 10 Performance comparison on the IBM p690
cluster.

Fig. 11 Performance comparison on the Cray X1.

199PERFORMANCE PORTABILITY IN CAM

multiple dynamical cores. The increase in memory
requirements has not proven to be limiting, as the amount
of memory in current HPC systems has been adequate for
the problem sizes of interest. In this paper we have
shown that careful optimizations of the physics data
structures and introduction of load balancing and com-
munication optimization options have led to significant
performance improvements, more than offsetting the
small amount of copy overhead introduced by decou-
pling. On non-vector systems, support for additional
OpenMP parallelism and efficient load balancing has
proved to be as important as improved cache blocking,
our initial motivation for the chunk data structure. On
vector systems, the ability to increase vector length to
longer than the processor vector length has proven to be
more significant than expected.

The MPI-2 and Co-Array Fortran communication
options did not improve performance of the load balanc-
ing communication on the Cray X1, and the MPI-2 com-
munication option did not improve performance on the

IBM p690 cluster. However, other researchers have
shown significant performance improvements from using
MPI-2 on other platforms when using the finite-volume
dycore (Putman et al., 2005). We consider the inclusion
of the MPI-2 and Co-Array Fortran options to be defen-
sive programming, providing an alternative when imple-
mentations of MPI point-to-point or collective routines
are not efficient.

The experiments described in this paper used a full
grid, in which each line of constant latitude has the same
number of longitude points. CAM also supports using a
reduced grid where, for example, fewer longitude points
are used near the poles. The chunk data structure works
equally well with a reduced grid, and load balancing
becomes even more important as the standard domain
decomposition in the dynamics is even more load imbal-
anced in the physics. This is the first example of using the
chunk data structure with something other than a longi-
tude–latitude computational grid. Preliminary studies with
a spectral element method using a more general finite-ele-

Table 3
Optimal performance settings for the IBM p690 cluster

Proc.
MPI

processes

OpenMP
threads

per process
pcols phys_loadbalance phys_alltoall

Improvement
versus CCM

alg.

32 32 1 16 2 0 28%

64 64 1 16 3 1 28%

96 96 1 24 2 0 36%

128 128 1 16 3 1 25%

160 40 4 24 2 0 21%

192 48 4 24 3 1 33%

256 128 2 16 3 1 47%

320 40 8 32 0 – 48%

384 48 8 24 3 1 62%

512 128 4 16 3 1 91%

Table 4
Optimal performance settings for the Cray X1

Proc.
MPI

processes
OpenMP threads

per process
pcols phys_loadbalance phys_alltoall

Improvement
versus CCM alg.

8 8 1 1026 2 0 19%

16 16 1 1026 2 0 23%

32 32 1 1026 2 0 24%

64 64 1 514 2 0 21%

96 96 1 514 2 0 30%

128 128 1 258 2 0 10%

200 COMPUTING APPLICATIONS

ment-like grid have been promising. However, the current
implementation of load balancing is specific to a longi-
tude–latitude grid (full or reduced). While this is not nec-
essary, we have delayed a general implementation until
the next dycore is ready to be incorporated into CAM.

ACKNOWLEDGMENTS

This research was sponsored by the Climate Change
Research Division of the Office of Biological and Envi-
ronmental Research, Office of Science, U.S. Depart-
ment of Energy (DOE) under Contract No. DE-AC05-
00OR22725 with UT-Batelle, LLC. Accordingly, the U.S.
Government retains a non-exclusive, royalty-free license
to publish or reproduce the published form of this contri-
bution, or allow others to do so, for U.S. Government pur-
poses.

We gratefully acknowledge the support of the DOE
Office of Biological and Environmental Research, Cli-
mate Change Prediction Program and the Center of Com-
putational Sciences at ORNL for access to the IBM p655
and p690, SGI Altix, and Cray X1 systems used in this
paper. We feel fortunate to have been able to contribute to
the development of CAM. The success of our efforts has
been due to close collaboration with the many software
engineers and computational scientists involved in CAM
development, especially those in the Climate and Global
Dynamics Division at the National Center for Atmospheric
Research (NCAR) and our colleagues in the Office of Sci-
ence, U.S. DOE, Scientific Discovery Through Advanced
Computing (SciDAC) project (http://www.sc.doe.gov/
ascr/mics/scidac) “Collaborative Design and Develop-
ment of the Community Climate System Model for Teras-
cale Computers”. In particular, we wish to thank Byron
Boville and David Williamson of NCAR for leading the
initial efforts to decouple the physics and dynamics.

AUTHOR BIOGRAPHIES

Patrick H. Worley is a senior research computer scien-
tist in the Computer Science and Mathematics Division
of ORNL. He earned his Ph.D. in computer science from
Stanford University in 1988. His research interests
include parallel algorithm design and implementation,
the performance evaluation and optimization of parallel
scientific programs, and the numerical simulation of par-
tial differential equations (PDEs). Worley’s parallel algo-
rithm work ranges from theoretical investigations into
what is feasible based on information theoretic concepts
to the design and implementation of parallel algorithms
in atmospheric and ocean simulation models. His work
on performance evaluation has four aspects: (1) perform-
ance data collection, visualization, and analysis; (2)
benchmarking and benchmarking methodology; (3) per-

formance portability; (4) performance modeling and pre-
diction.

John B. Drake is the Climate Dynamics Group Leader
at the ORNL. He received his Ph.D. in mathematics from
the University of Tennessee in 1991, and has worked on
projects involving fluid dynamics simulation among the
laboratories of the ORNL complex since 1979. His pri-
mary research interest is in numerical algorithms for
atmospheric flows that involve problems of scale and
closure. Parallel algorithms and high-end computational
techniques have been the focus of several recent projects
to develop state-of-the-art climate models for parallel
computers. He has been active in advancing the use of
parallel computation and supercomputers for climate
change simulations, serving on the NCAR CCSM Advi-
sory Board and on organizing committees of confer-
ences, notably the “PDEs on the Sphere” meetings.

References

Barros, S. R. M., Dent, D., Isaksen, L., Robinson, G.,
Mozdzynski, G., and Wollenweber, F. 1995. The IFS
model: a parallel production weather code. Parallel Com-
puting 21:1621–1638.

Blackmon, M. B. et al. 2001. The Community Climate System
Model. Bulletin of the American Meteorological Society
82:2357–2376.

Collins, W. D. et al. 2004. Description of the NCAR Commu-
nity Atmosphere Model (CAM 3.0). NCAR Technical
Note NCAR/TN-464+STR, NCAR, Boulder, CO.

Dagum, L. and Menon, R. 1998. OpenMP: an industry-standard
API for shared-memory programming. IEEE Computa-
tional Science and Engineering 5:46–55.

Douglas, C., Ju, J., Kowarschik, M., Ruede, U., and Weiss, C.
2000. Cache optimization for structured and unstructured
grid multigrid. Electronic Transactions on Numerical
Analysis 10:21–40.

Drake, J. B., Foster, I. T., Michalakes, J. G., Toonen, B., and
Worley, P. H. 1995. Design and performance of a scalable
parallel community climate model. Parallel Computing
21:1571–1591.

Drake, J. B., Hammond, S., James, R., and Worley, P. H. 1999.
Performance tuning and evaluation of a parallel commu-
nity climate model. Proceedings of the ACM/IEEE Con-
ference on High Performance Networking and Computing
(SC99), November 13–19, IEEE Computer Society Press,
Los Alamitos, CA.

Foster, I. T., Toonen, B., and Worley, P. H. 1996. Performance
of parallel computers for spectral atmospheric models.
Journal of Atmospheric and Oceanic Technology
13:1031–1045.

Foster, I. T. and Worley, P. H. 1997. Parallel algorithms for the
spectral transform method. SIAM Journal of Scientific
Computing 18:806–837.

Gropp, W., Snir, M., Nitzberg, B., and Lusk, E. 1998. MPI: The
Complete Reference, 2nd edition, MIT Press, Boston.

201PERFORMANCE PORTABILITY IN CAM

Hack, J. J., Boville, B. A., Briegleb, B. P., Kiehl, J. T., Rasch,
P. J., and Williamson, D. L. 1992. Description of the NCAR
Community Climate Model (CCM2). NCAR Technical
Note NCAR/TN–382+STR, NCAR, Boulder, CO.

Kiehl, J. T., Hack, J. J., Bonan, G., Boville, B. A., Williamson,
D. L., and Rasch, P. J. 1998. The National Center for
Atmospheric Research Community Climate Model:
CCM3. Journal of Climate 11:1131–1149.

Kiehl, J. T., Hack, J. J., Bonan, G. B., Boville, B. A., Briegleb,
B. P., Williamson, D. L., and Rasch, P. J. 1996. Descrip-
tion of the NCAR Community Climate Model (CCM3).
NCAR Technical Note NCAR/TN–420+STR, NCAR,
Boulder, CO.

Lin, S-J. 2004. A ‘vertically Lagrangian’ finite-volume dynam-
ical core for global models. Monthly Weather Review
132:2293–2307.

Mirin, A. and Sawyer, W. B. 2005. A scalable implementation
of a finite-volume dynamical core in the Community
Atmosphere Model. International Journal of High Per-
formance Computing Applications 19(3).

Numrich, R. W. and Reid, J. K. 1998. Co-array Fortran for par-
allel programming. ACM Fortran Forum 17:1–31.

Putman, W., Lin, S-J., and Shen, B. 2005. Cross-platform per-
formance of a portable communication module and the
NASA finite volume general circulation model. Interna-
tional Journal of High Performance Computing Applica-
tions 19(3).

Sawdey, A., O’Keefe, M., and Jones, W. 1997. A general pro-
gramming model for developing scalable ocean circula-
tion applications. Proceedings of the 7th ECMWF

Workshop on Use of Parallel Processors in Meteorology,
Reading, UK, December 1996, World Scientific, Singa-
pore.

Whaley, R. C., Petitet, A., and Dongarra, J. J. 2001. Automated
empirical optimization of software and the ATLAS
project. Parallel Computing 27:3–35 (also available as
University of Tennessee LAPACK Working Note 147,
UT-CS-00-448, 2000, www.netlib.org/lapack/lawns/
lawn147.ps).

Williamson, D. L. and Olson, J. G. 1994. Climate simulations
with a semi-Lagrangian version of the NCAR Community
Climate Model. Monthly Weather Review 122:1594–
1610.

Williamson, D. L. and Rasch, P. J. 1989. Two-dimensional
semi-Lagrangian transport with shape-preserving interpo-
lation. Monthly Weather Review 117:102–129.

Worley, P. H. 2000. Performance evaluation of the IBM SP and
the Compaq Alphaserver SC. Proceedings of the 14th
International Conference on Supercomputing, Dallas, TX,
November 4–10, Association for Computing Machinery,
New York, pp. 235–244.

Worley, P. H. 2002. Scaling the unscalable: a case study on the
Alphaserver SC. Proceedings of the IEEE/ACM SC2002
Conference, Baltimore, MD, November 16–22, IEEE
Computer Society Press, Los Alamitos, CA.

Worley, P. H., Dunigan, T. H. Jr., Fahey, M. R., White, J. B. III,
and Bland, A. S. 2002. Early evaluation of the IBM p690.
Proceedings of the IEEE/ACM SC2002 Conference, Balti-
more, MD, November 16–22, IEEE Computer Society
Press, Los Alamitos, CA.

