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Abstract

The Community Climate System Model (CCSM) is a com-
puter model for simulating the Earth’s climate. The CCSM
is built from four individual component models for the
atmosphere, ocean, land surface, and sea ice. The notion
of a physical/dynamical component of the climate system
translates directly to the software component structure.
Software design of the CCSM is focused on the goals of
modularity, extensibility, and performance portability.
These goals are met at both the component level and
within the individual component models. Performance
portability is the ability of a code to achieve good perform-
ance across a variety of computer architectures while
maintaining a single source code. As a community model,
the CCSM must run on a variety of machine architectures
and must perform well on all these architectures for com-
putationally intensive climate simulations.
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1 Introduction: Community Climate
System Model

The Community Climate System Model (CCSM) is a
computer model for simulating the Earth’s climate. It is
supported primarily by the United States National Sci-
ence Foundation (NSF) and the United States Depart-
ment of Energy (DOE) and is freely available to the
climate community for use in climate research, climate
prediction, and assessment of climate change scenarios.
The CCSM, like other coupled climate models, is built
from four individual component models for the atmos-
phere, ocean, land surface, and sea ice. The notion of a
physical/dynamical component of the climate system
translates directly to the software component structure.
The physical basis for coupling the models has been
worked out through the development of a flux coupler
component, which takes into account the different natural
time-scales for each component as well as the need to
conserve physical quantities such as mass, energy, and
momentum in the coupled system (Collins et al., 2005b).
All codes are fully documented and detailed descriptions
are available at http://www.ccsm.ucar.edu/models/
ccsm3.0.

The atmospheric component of CCSM3 is the Com-
munity Atmosphere Model (CAM) and is a descendant
of the National Center for Atmospheric Research
(NCAR) atmospheric climate models (Washington,
1982; Williamson, 1983). Standard resolutions are T85
for 1.4 degrees (128 x 256 x 26), T42 for 2.8 degrees (64
x 128 x 26), and T31 for 3.75 degrees (48 X 96 x 26).
The 26-level vertical grid uses a hybrid pressure coordi-
nate system. CAM solves the three-dimensional fluid
dynamics using the spectral horizontal discretization and
fast transform techniques. Physical process models,
including radiation transport, convection, moist cloud
processes, and precipitation, are largely computed using
detailed physical parametrizations (Collins et al., 2004).
Time integration is with a centered, three-level (leapfrog)
scheme and the semi-implicit system for fast gravity
waves solved in the transform domain.

The ocean model is based on the Parallel Ocean Pro-
gram (POP), version 1.4.3 (Smith and Gent, 2002). It is
an ocean circulation model developed at Los Alamos
National Laboratory and belongs to a class of ocean
models that use depth as the vertical coordinate. POP
solves the primitive fluid equations on a sphere using
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second-order differencing for the spatial derivatives on a
staggered mesh. For climate simulations as part of the
CCSM, POP uses a displaced-pole grid (Smith and Kor-
tas, 1995) with the logical North Pole displaced into the
Greenland land mass. Such a grid permits simulations of
the Arctic regions without the polar singularity. Horizon-
tal resolutions are variable with enhanced resolutions
near the equator and in the North Atlantic due to the dis-
placed pole, but typical resolutions are, on average, one
degree (320 x 384 x 40) and three degrees (100 x 116 X
25). The 40-level vertical grid has variable spacing, start-
ing with 10 m near the surface to better resolve surface
and mixed-layer processes and expanding to 250 m in the
deep ocean. Solutions are integrated forward in time
using a leapfrog time-step for the three-dimensional solu-
tion and an implicit preconditioned conjugate gradient
solver for the fast barotropic wave modes (Dukowicz and
Smith, 1994). Various physical parametrizations, subgrid
models, and other features are available (Smith and Gent,
2002).

The land component is the Community Land Model
(CLM3). The land model uses a nested subgrid hierarchy
of scales representing land units, soil or snow columns,
and plant functional types (Bonan et al., 2001; Oleson et
al., 2004). The land component operates on the same grid
resolution as the atmospheric component.

The sea ice model CSIMS is based on the Los Alamos
CICE model with an elastic—viscous—plastic ice dynam-
ics (Hunke and Dukowicz, 1997, 2002) and the Bitz and
Lipscomb thermodynamics (Bitz and Lipscomb, 1999)
with multiple ice thickness categories. An incremental
remapping scheme (Lipscomb and Hunke, 2004) is used
for the transport of ice. The ice model uses the same dis-
placed-pole grid and same resolution as the ocean com-
ponent (Briegleb et al., 2004).

The precise details of which parametrizations and
options are used in the models are described in Collins et
al. (2005b).

2 Software Design and Software
Engineering

Software engineering is typically defined as a formal
process used to design and implement software (Soft-
ware Engineering Institute, 1995). Little is written on
software engineering for codes that develop and evolve
over the span of many generations of computer architec-
tures (Drake and Foster, 1995). In the evolution of scien-
tific community codes, such a process must also include
collaborative software development and the use of soft-
ware frameworks. With this broad scope, software engi-
neering and design underlies much of the effort of the
CCSM project. Software design of the CCSM is focused
on the goals of modularity, extensibility, and portability.

These goals must be met at both the component level and
within the individual component models.

2.1 MODULARITY AND EXTENSIBILITY

A community research code such as the CCSM must be
modular and extensible to enable rapid adoption of new
capabilities and new physical parametrizations. Modular-
ity also permits users to choose between many model
configurations and to customize the model for specific
applications. At the lowest level, the ability to swap, add,
or choose between physical parametrizations is necessary
and was already a part of most CCSM component models.
Use of FORTRAN modules and other software tech-
niques for encapsulation greatly helps maintain modularity
at this level. Component models are also modular at the
level of major model subcomponents. For example, the
CAM and other atmosphere models treat atmospheric
dynamics and physics as self-contained subcomponents
and are thus able to integrate new dynamical cores and
their interactions with the same model physics.

At the model coupling level, it must be possible for
alternative component models to be substituted or added.
One use of this capability is to provide simplified models
for individual components. For example, the CCSM sup-
plies “data” or “dead” models that can be used to mimic
components by supplying observed fields or constant
fields when a fully interacting component is not necessary.
The data-cycling models (data models) are small, simple
models that read existing data sets from observations,
reanalysis products, or even previous control simulations.
These data-cycling components are very inexpensive and
are used for both test runs and certain types of model
simulations that do not require feedbacks from another
component. The dead models are simple codes that facil-
itate system testing. They generate realistic forcing data
internally, require no input data, and can be run on multi-
ple processors to simulate the software behavior of the
fully active system.

Swapping components can be used to investigate sen-
sitivity to model formulations. In the third Intergovern-
mental Panel on Climate Change (IPCC) assessment
(Houghton et al., 2001), a coupled climate model with an
isopycnal ocean component (density as vertical coordi-
nate) resulted in a different North Atlantic overturning
circulation from many of the coupled models with z-
coordinate ocean components. The CCSM is currently
being used to investigate this issue by comparing a con-
trol run using the POP z-coordinate ocean component
with an identical run using the isopycnal MICOM
(Bleck, 1998) model. At the coupling level, new frame-
work efforts such as the Earth System Modeling Frame-
work (ESMF; Hill et al., 2004) and the Common
Component Architecture (CCA; Armstrong et al., 1999;



Bernholdt et al., 2005) are providing more generic com-
ponent interfaces to the climate and scientific community
and should further simplify and enable component inter-
action.

An important new capability for the CCSM and other
climate models is the addition of chemical and biogeo-
chemical interactions. Dynamic vegetation and ecosys-
tem models are being added to the land and ocean
components and will interact with atmospheric chemistry
models. A design for chemical coupling with the physics
modules is partially implemented and is an important test
of the CCSM goal of extensibility.

A new dynamical core (Lin and Rood, 1997; Lin,
2004) is being introduced for the atmosphere that is
based on a finite volume discretization with a Lagrangian
vertical coordinate. This formulation is particularly
advantageous for conservative transport of chemical trac-
ers and is receiving much attention. Standard resolutions
for the finite volume version of the CAM are 2 x 2.5 and
1 x 1.25 degrees, each with 26 vertical levels. The use of
the finite volume dynamical core may result in a two-
dimensional data and computational decomposition that
yields scaling beyond that of the current Eulerian spectral
dynamical core (Mirin and Sawyer, 2005).

2.2 PERFORMANCE PORTABILITY

Portability is the ability of a code to compile and run suc-
cessfully across all platforms. This is largely achieved
through adherence to language standards and widely
used libraries such as Message Passing Interface (MPI).
By “performance portability”, we mean the ability of a
code to achieve good performance across a variety of
computer architectures while maintaining a single source
code. As a community model, the CCSM must run on a
variety of machine architectures available to the climate
community and must perform well on all these architec-
tures for computationally intensive climate simulations.
The target machines are most often clusters of commod-
ity cache-based microprocessors. These include Linux
clusters, the IBM SP3 and IBM p690. More recently,
vector computers, including the NEC SX6 and Cray X1,
have become available to the climate community and
have added a significant new challenge for performance
portability of the CCSM.

There are cases where portability is not possible within
a single source code. In these cases, it is the practice to
isolate non-portable code into modules or libraries that
can be selected at compile time or at run-time. Generic
interfaces or wrappers can be defined so that the calling
code can remain portable. An example of such a structure
is the support of different communications paradigms.
Often communication-related routines can be isolated in
a small set of routines and called using an interface that is

identical whether the underlying code is implemented in
MPI, SHMEM, Co-array FORTRAN or copies to a mem-
ory buffer. We have avoided use of preprocessor direc-
tives (e.g. the C preprocessor ifdef) as a primary means of
achieving portability; directives often can proliferate and
adversely affect code readability as well as complicate
testing procedures. Selective use of directives is permit-
ted in cases where code is hidden from the user and well
encapsulated.

Climate codes are often limited in performance by
memory bandwidth so a key aspect of performance port-
ability is the need to adjust the size and shape of data
structures to optimize performance on machines with dif-
ferent cache sizes or with vector processors. Tunable
parameters are provided for adjusting data structure size
and loop lengths to optimize codes based on problem
size, system architecture, and processor configuration.
Automated, run-time adjustment of these parameters is a
long-term goal, particularly when used to achieve
dynamic load balancing. In the short term, compile time
parameters are sufficiently easy for scientists to optimize
for high processor performance without detailed knowl-
edge of memory bandwidth properties of a particular
architecture. This will be described more fully in a later
performance section and is the subject of several papers
in this special issue (Hoffman et al., 2005; Kerbyson and
Jones, 2005; Worley and Drake, 2005).

A key decision made to achieve performance portabil-
ity was the adoption of a hybrid parallel programming
paradigm with independent parallel data decompositions
for each component. By not enforcing a single decompo-
sition/communication style, the component developers
are free to use the methods that give the best perform-
ance. For the atmospheric model, the specification of
parallel granularity for both distributed memory struc-
tures with parallel MPI communication and shared mem-
ory structures with OpenMP parallel task specification
are configurable at run-time. The most advantageous set-
tings may vary from machine to machine often with fac-
tors of 2 or 3 difference in simulation throughput. The
consequence of this design decision is that large amounts
of data may be exchanged between components in the
course of a simulation. This “data transpose” is localized
in a small number of utility routines so that optimization
is straightforward, but interconnection bandwidth, laten-
cies, and copy times are limiting factors for scalability
and simulation throughput.

2.3 SOFTWARE ENGINEERING PROCESS

A formal software engineering process involves a cycle
of defining requirements, designing the software, imple-
menting the design and testing the software (Software
Engineering Institute, 1995). Documentation and reviews



at each stage are important to catch bugs early and to
avoid costly rewriting when designs do not satisfy cur-
rent or future requirements. The design documents pro-
duced for the CCSM started with descriptions of new
scientific requirements of the model. Computational
requirements and description of the software architecture
led to interface and data structure specification and
implementation. Testing was performed at several levels.
Unit testing of individual subroutines and modules veri-
fied modules work as designed; integrated testing of
entire models was used to validate physical fidelity of the
model and ensure that all components of a model interact
with each other without unintended side effects. Frequent
regression tests were required to catch problems gener-
ated due to changes in computational environment or
bugs introduced during minor maintenance.

Three basic practices support the software engineering
process (Hunt and Thomas, 1999): version control, unit
testing, and automation. Because the CCSM effort
includes a large body of legacy code, the process was
adapted to fit the current software. Adopting the entire
process was a goal for all new code developed. For exist-
ing code, the goal focused primarily on testing and vali-
dation. Unit tests and automated testing scripts were
developed and used as criteria for acceptance of code
changes. The automated test scripts proved very useful to
remote developers because they enforced code correct-
ness standards uniformly. A level of confidence on
check-in that the simulation capability was not degraded
was important for the many ongoing users of the code.
The coordination of check-ins was managed by a Change
Review Board (CRB) for the atmospheric model and
gatekeepers for the ocean, land, and sea ice components.
Using the CVS version control system with remote
access allowed precise organization and access control of
development branches, but also offered risk mitigation
when bugs and inefficiencies were inadvertently intro-
duced.

To ease acceptance of new changes and make the
process easier for developers, coding standards and test-
ing infrastructure have been created for the community.
Coding standards help to encourage encapsulation and
modern software practices and also help to maintain a
consistent look and feel that users and other developers
can understand. A testing infrastructure lowers the bur-
den for developers and encourages good software quality
assurance. Information recorded with each check-in
included: bit-for-bit reproducibility (implying only struc-
tural or performance changes), a list of tests run on which
platforms, impact on timing and memory usage, changes
to the build system required. Changes producing more
than round-off differences in the results were not permit-
ted by a single developer. The CRB required much
longer simulations, broader discussions, and scientific

review when new modules were introduced which
changed the model climate.

This last point should be elaborated and emphasized as
it distinguishes scientific software development from
business software, and there are profound implications
for the software engineering process appropriate to com-
putational science. Due to the mathematical non-linearity
inherent in climate system models, it is not possible to
anticipate what effect changes in one component will
have on the results of other components. Care must be
taken to maintain a delicate balance of physical (and bio-
logical and chemical) processes within the model in
order to guarantee a state-of-the-art, quality simulation
product. Changes need to be sequenced, one at a time, so
that the relative effects can be tracked and understood.
This process of model development and code modifica-
tion is closely linked with scientific discovery in compu-
tational science. Thus, software engineering for climate
modeling must involve climate scientists at each step of
the process: the specification of requirements, software
design, implementation, and testing.

2.4 COLLABORATIVE DEVELOPMENT

The CCSM is an evolving project with over 300 research-
ers attending the annual CCSM Workshop. While only a
subset of these researchers actively contribute to the
model, the development team involves a large number of
geographically distributed researchers. Tools and proc-
esses are required for managing code changes and con-
flicts. Such tools include common software repositories,
version control systems, test requirements, and procedures
for introducing code into the repositories. Researchers
who choose to invest their efforts in the code framework
must be guaranteed the ability to publish their results
before code is made available to the wider community.
An open source model is therefore not appropriate and
repository access has been controlled.

Day-to-day management of the software, repositories
and development schedules is the role of the CCSM Soft-
ware Engineering Group (CSEG) at the NCAR and the
component model CRB. Wider input from the commu-
nity on software issues comes through the Software
Engineering Working Group (SEWG). Setting priorities
for new scientific capabilities remains in the individual
component model working groups, the application work-
ing groups and ultimately with the Scientific Steering
Committee (SSC). Such a management structure pro-
vides for community input and development while main-
taining reasonable control of the software quality and
routine activities.

Community development will also become easier as
the community moves toward componentization and
shared utility infrastructure. Important frameworks and



Table 1

Computational performance of CCSM3.0 for IPCC production

Platform IBM SP3 IBM p690 ES(NEC SX6) Cray X1
Number of processors 208 192 184 208
Years per day 1.57 3.43 16.2 13.6
Years per day per CPU 0.0075 0.0179 0.0880 0.0654

utilities that are actively being developed include the
ESMF (Collins et al., 2005a), the Model Coupling
Toolkit (MCT; Larson et al., 2005), the Multiprocessor
Handshaking Library (MPH; He and Ding, 2005), and
the CCA (Armstrong et al., 1999).

3 Performance

The production performance of the CCSM3 is most often
expressed as production throughput in number of simu-
lated years per wall clock day for a specified number of
processors (or years per day). A century long simulation
takes 25 days for a computer delivering four years per
day. Scaling efficiency is expressed as simulated years
per wall clock day per CPU (or years per day per CPU).
Table 1 shows the performance on each computing plat-
form of the standard IPCC (T85, 1 degree ocean) model
configuration. The number of processors used for a pro-
duction run is a choice based on load balance of the com-
ponents, batch queue constraints, and a measure of time
required to generate the results. The time required in
weeks can be large where a thousand years or more of
simulation are generated.

3.1 LOAD BALANCING

A primary computational challenge in the CCSM and
other climate models is the load imbalance generated by
the non-homogeneous structure of a multiphysics, multi-
component model. A striking example of the structure of
the load imbalance appears in the calculation of the
short-wave radiation balance. This computation need
only be done where the sun is shining, i.e. on half the
computational domain. This region changes for each
time-step. Load imbalances within a component are typi-
cally resolved using data decomposition schemes such as
those discussed in the next section.

Load imbalance is also generated from the concurrent
component execution model used by CCSM. CCSM
launches five individual binaries that run concurrently on
separate processor sets. Each of the four climate compo-
nents communicates with each other via the coupler com-
ponent at prescribed stages of processing. Choosing a
“correct” number of processors for each component is at

best a compromise. The goal for a specified number of
processors is to provide a number of processors for each
component such that processing delays are minimized,
idle processor time is minimized, and the maximum sim-
ulation years per day is achieved. This is complicated as
each component has different scaling attributes and dif-
ferent data decomposition restrictions. Some component
processing is dependent on other component processing
and may stall if processor assignments are poorly chosen.
As an example, one stage of the sea ice processing is on
the critical path to the atmosphere component. The sea
ice model must therefore be allocated enough processors
to avoid excessive waiting by other components.

Typically, for a fully active T85x1 configuration, two-
thirds of the total processor count is assigned to the
atmospheric component. The balance of the processors is
assigned in part to ensure that the atmospheric processors
are kept busy. Balance experiments at T31x3 are shown
in Figures 1 and 2 for a variety of computer platforms
and processor counts.

3.2 FLEXIBLE DATA DECOMPOSITION

To achieve performance portability, flexible data struc-
tures and data decompositions have been introduced in
each component model. The ocean and atmosphere mod-
els have adopted schemes that rely on chunks or blocks
of data that can be tuned for a particular architecture. The
chunks or blocks can be sized for either cache or vector
machines, providing either cache blocking or long vec-
tors. The chunks or blocks are then distributed in a (cur-
rently static) load-balanced manner, depending on
estimated work per block. The blocks or chunks can also
be oversubscribed to compute nodes to provide a hybrid
shared-memory/messaging-passing programming style.
The details of these data structures are presented in Wor-
ley and Drake (2005), Kerbyson and Jones (2005) and
Hoffman et al. (2005). Similar data structures are cur-
rently being introduced to the ice model (Lipscomb, pri-
vate communication). For ocean and sea ice models, such
a blocking also provides the capability to remove land or
ice-free blocks from the computation, saving computa-
tional costs. The land component also utilizes a “clump”
scheme to achieve similar results (Hoffman et al., 2005).
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3.3 VECTORIZATION

Vector computers have once again become available to
the climate community with access to both the Cray X1 and
the Japanese Earth Simulator (through collaboration with
the Central Research Institute for Electric Power Industry
(CRIEPI)). The ocean model ported easily to vector archi-
tectures as it uses array syntax over horizontal domains,
an easily vectorizable construct. However, there were a
few routines written for improved cache performance that
had to be revised for vector architectures. The atmosphere
model evolved from code that had once been vectorized,
but required extensive restructuring in the radiation rou-
tines (performed by Dave Parks and John Snyder of NEC)
and the insertion of many compiler directives for both
NEC and Cray machines (performed by Matt Cordery of
Cray). Local loop rearrangements in the spectral dynami-
cal core exposed more vectorization to the compilers.
The sea ice and land models were both new models
developed with structures and design that were well

suited to the science and performed well on cache-based
architectures, but prevented vectorization. In the sea ice
model thermodynamics, horizontal loops were at a high
level with subroutine calls and branching within the
loops. In collaboration with CRIEPI (through Clifford
Chen of Fujitsu), the ice thermodynamics was restruc-
tured, pushing the horizontal loops into subroutines and
replacing conditionals within loops with a pre-gather
construct. The resulting code vectorizes well and also
performs well on cache-based architectures.

Vectorization of the land model required a fundamen-
tal rework of the data structures of the CLM (Hoffman et
al., 2005).

3.4 COMMUNICATION

Communication affects performance at all levels in the
CCSM. Between components, information was initially
passed only between master tasks of each component,
requiring a gather/scatter process. This has now been
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replaced by more general all-to-all communication capa-
bilities (Jacob et al., 2005). Communications between the
atmospheric model dynamics and physics subcompo-
nents has also been improved and various options can be
chosen at run-time to maximize performance for a partic-
ular architecture or configuration (Hoffman et al., 2005;
Worley and Drake, 2005).

Within components, the use of alternative messaging
paradigms is also supported using communication modules
and wrappers. This can be particularly useful for improv-
ing the scaling of the ocean model’s barotropic solver and
the halo updates of the finite volume dynamical core for
the atmosphere. Performance and scaling of the baro-
tropic solver (a conjugate gradient solver) depends
strongly on message latency, so low latency messaging
alternatives can result in large performance improve-
ments in the model. On machines with shared memory,
the MPI-2 one-sided protocol is advantageous, providing
message passing at the cost of a (remote) memory copy.

4 Future software challenges for CCSM

The future scientific direction of the CCSM is largely in
the hands of climate researchers who will extend the
model to answer specific research questions. The CCSM
Science Plan (Kiehl et al., 2004b) calls for extension of
capabilities to understand the interaction of aerosols and
atmospheric chemistry on climate. The effect of fine-
scale ocean eddies on the climate balance and the sources
of climate variability are also identified. At the same
time, there is a need to improve basic physical aspects of
the models that deal with clouds and radiant energy
exchanges.

The next few years will see the addition of approxi-
mately 100 chemical species to the “transport list” in the
atmospheric model along with a consequent increase of
computational cost to compute the reactions among these
species. Early experiments indicate that the cost per grid
point of the atmospheric calculation will go up by a fac-



tor of eight. Similar increases will occur in the ocean due
to the addition of ocean biogeochemistry.

Increased resolution to provide regional detail and to
resolve significant events, such as hurricanes and
typhoons, and to provide better coastal interactions in the
ocean model are also generally needed. In an attempt to
project the needed computational capabilities, the CCSM
Business Plan (Kiehl et al., 2004a) suggests that “a 144-
fold increase in computational resources relative to what
is currently available” is required to build a “comprehen-
sive system model with appropriate resolution”. Over the
next ten years we expect the available computers to
increase in power from several teraflops to many peta-
flops. The additional capability will open many fruitful
avenues of scientific investigation with coupled Earth
system models as a key tool for research. Recent projec-
tions for CCSM (Keyes, 2004) covering the next ten years
place the computational growth factor at 10°-10" in order
to address the scientific questions of climate science.

The role of dynamic vegetation (Levis et al., 2004) in
the carbon cycle and the feedbacks with climate change
relate to a complex set of biological and chemical proc-
esses that must be modeled and simulated to quantify
their interactions. New observational capabilities from
satellites are allowing the construction of detailed land
use and ecological characterizations. These provide a
challenge to modelers to use as driving boundary condi-
tions for historical simulations of climate and to develop
process models that duplicate observed behaviors.

Application of the model to global climate change
studies and to evaluate future emission scenarios also
challenges the computational capabilities of present cent-
ers and available supercomputers. As a case study, the
simulations supporting the United States’ contribution to
the IPCC 2007 report (Watson et al., 2001) have pro-
duced approximately 10,000 years of climate simulations
with over 100 Tbytes of simulation output. The resource
required using the present model for these computations
is 27.5 x 10° CPU-hours of an IBM SP3 (NHII). The pro-
duction simulation phase of the project ended in late
2004 and used resources provided by NCAR (IBM
p690), Oak Ridge National Laboratory (IBM p690),
National Energy Research Scientific Computing Center
(IBM SP3) and the Japanese Earth Simulator (NEC
SX6). Each future scenario involved an ensemble of one
to five computational experiments in order to character-
ize the dynamic uncertainties and confidence intervals of
the model forecast.

To effectively utilize the high-end computing capabili-
ties of modern supercomputers, developers of coupled
climate models face two continuing challenges: scalabil-
ity and load imbalance. As longer simulations are
required, the spatial resolution must be lowered. Because
most scalable parallel algorithms are based on a domain

decomposition technique that splits the data (and
processing) across the nodes of the machine, there is a
limited amount of parallelism due to low resolution.
Compounding this effect is the limitation on time-step
size imposed by a stability criteria based on the minimum
mesh spacing. As the resolution is increased the number
of time-steps to complete a simulation also increases,
which, in turn, increases the computational cost of the
simulation. Since the costs associated with time stepping
are inherently sequential, the National Research Council
report Improving the Effectiveness of U.S. Climate Mode-
ling (Sarachik, 2001) notes that Ahmdal’s law applies.
With serial portions of the algorithm at 0.1%, Amdahl’s
law implies the maximum (asymptotic) speedup is 1000.
The speed of the computer on this serial portion of the
code is highly relevant for climate simulation throughput.

The cost of memory access and communication in a
distributed memory parallel algorithm is also critical for
scalability of the climate codes during a given time-step.
Ordering of the indices and distribution of the data struc-
tures for effective memory access in one phase of the cal-
culation (e.g. fast Fourier transforms) may be different
from another phase, thus requiring a data transposition
and introducing a dependency on the interconnect band-
width and latency. This effect is clearly evident when
comparing the performance of the CCSM on machines
with fast interconnects. The memory access pattern for
significant portions of the atmospheric physics code
shows ratios of the number of floating point operations to
memory access in the range of 1 or 2. These portions
show good performance on vector processors such as the
NEC SX6 or the Cray X1, and must be fit into cache for
good performance on scalar processors. Because of the
sensitivity of the data transpose operations to memory
bandwidth, the nearest-neighbor halo updates to latency,
the physics calculations to memory and processor speed,
it is evident that balanced machine architectures offer an
advantage for climate simulation codes.

Several papers in this issue describe steps taken to
reduce the load imbalance and to address the issues of
scalability. In the coupled system, one ‘“bad component”
can overshadow the good performance of all the other
components, so it is important to hold component devel-
opment to a high standard and not allow the simulation
capabilities to be degraded. This can be accomplished by
continued attention to the software engineering process
and the design of the code for an open community of
developers.
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