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1 INTRODUCTION

The shallow water equations modeling ow on a sphere are useful for the development and

testing of numerical algorithms for atmospheric climate and weather models. A new formulation

of the shallow water equations is derived which exhibits an advective form for the vorticity and

divergence. This form is particularly well suited for numerical computations using a semi-

Lagrangian spectral discretization. A set of test problems, standard for the shallow water

equations on a sphere, are solved and results compared with an Eulerian spectral model.

The semi-Lagrangian transport method was introduced into atmospheric modeling by Robert,

Henderson, and Turnbull [6]. A formulation based on a three time level integration scheme in

conjunction with a �nite di�erence spatial discretization was studied by Ritchie [4]. Two time

level grid point schemes were derived by Bates et al. [1]. Staniforth and Côt�e [8] survey develop-

ments of the application of semi-Lagrangian transport (SLT) methods for shallow water models

and for numerical weather prediction.

The spectral (or spherical harmonic transform) method when combined with a SLT method

is particularly e�ective because it allows for long time steps avoiding the Courant-Friedrichs-

Lewy (CFL) restriction of Eulerian methods, while retaining accurate (spectral) treatment of

the spatial derivatives. A semi-implicit, semi-Lagrangian formulation with spectral spatial dis-

cretization is very e�ective because the Helmholz problem arising from the semi-implicit time

integration can be solved cheaply in the course of the spherical harmonic transform. The com-

bination of spectral, semi-Lagrangian transport with a semi-implicit time integration schemes

was �rst proposed by Ritchie [5]. A advective formulation using vorticity and divergence was

introduced by Williamson and Olson [12]. They introduce the vorticity and divergence after the

application of the semi-Lagrangian discretization.

The semi-Lagrangian formulation of Williamson and Olson [12] and Bates et al. [1] has the

property that the metric terms of the advective form are treated discretely requiring a delicate

spherical vector addition of terms at the departure point and arrival point. In their formulation,

the metric terms associated with the advection operator do not appear explicitly. The spherical

geometry associated with the combination of vector quantities at arrivial and departure points

treats the metric terms and is derived in Bates et al. [1]. The formulation derived in this paper

avoids this vector addition. It is possible to do this because our formulation is based entirely

on a scalar, advective form of the momentum equations. This new form is made possible by the

generalization of a vector identity to spherical geometry.
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In Section 2 the standard form of the shallow water equations in spherical geometry are given.

Section 3 presents the vector identities needed to derive an advective form of the vorticity and

divergence equations. The semi-implicit time integration and semi-Lagrangian transport method

are described in Section 4. The SLT interpolation scheme is described in Section 5. Section 6

completes the development of the discrete model with the description of the semi-implicit spectral

equations. A discussion of results on several standard test problems is contained in Section 7.
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2 SHALLOW WATER EQUATIONS IN SPHERICAL GEOMETRY

The shallow water equations in advective form [12] in spherical geometry are

dv

dt
= �f~k � v �r� (1)

d��

dt
= ���r�v (2)

where the vector v = u~i + v~j is the horizontal vector velocity and is always orthogonal to the

unit vector ~k in the radial direction. It is assumed that �i and �j are two unit vectors in the

increasing directions of longitude and latitude respectively.

The free surface geopotential is denoted by � = ��+�s = g(h�+hs) and �
� = �0+ ��, where

g is the gravitational acceleration and h� is the height of the free surface above the bottom

height, hs. The bottom surface height speci�es orography as a time invariant function and �� is

the time invariant spatial mean. The Coriolis parameter f = 2
 sin � incorporates the e�ect of

rotation of the sphere at latitude � with angular velocity 
. If we consider the global geometry,

the equations require no boundary conditions but are posed with initial conditions on v and �.

The substantial derivative is given by

d

dt
=

@

@t
+ v � r:

The gradient operator and the term r�v will be de�ned later.

Expanding � in Eqs. (1) and (2), we obtain

dv

dt
+r�0 = �f~k � v�r�s (3)

d�0

dt
+ ��r�v = ��0r�v (4)

For simplicity the primes will be dropped from the equations.
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3 VORTICITY AND DIVERGENCE FORMS OF THE SHALLOW-WATER

EQUATIONS

In this section an advective form of the vorticity and divergence equations for shallow water

will be derived. The derivation of the divergence equation requires that a vector identity be

extended to the case of spherical geometry, so the �rst task is to establish the de�nitions of the

di�erential operators and present the required identities.

3.1 NOTATIONS AND IDENTITIES

In longitude-latitude coordinates (�; �) the de�nitions of gradient, divergence, Laplacian,

and curl operators, (denoted respectively by grad (r), div (r�), r2, and curl) are as follows:

grad A: A is a scalar function de�ned on the sphere and

grad A = rA =
~i

a cos �

@A

@�
+
~j

a

@A

@�

div F : F is a tangent vector function F = F1�i+ F2�j and

div F = r � F =
1

a cos �

@F1
@�

+
1

a cos �

@(cos �F2)

@�

curl F : F is a tangent vector function as in div F and

curl F = r� F =
~k

a cos �
[
@F2
@�

�
@(cos�F1)

@�
]

r2A: A is a scalar function de�ned on the sphere, and we de�ne the Laplacian operator on

a scalar function as

r2A =
1

a2 cos �
[
@

@�
(

1

cos �

@A

@�
) +

@

@�
(cos �

@A

@�
)]:

In contrast to the Laplacian operator on a scalar function, there are several possible de�ni-

tions of the Laplacian operator on a vector function. Here we set

r2F = r2F1�i+r2F2�j

and use the covariant derivative rF = fr�iF;r�jFg of the vector function F

r�iF = (
1

a cos �

@F1
@�

�
F2 sin �

a cos �
)�i+ (

1

a cos �

@F2
@�

+
F1 sin �

a cos �
)�j;
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r�jF =
1

a

@F1
@�

�i+
1

a

@F2
@�

�j:

Then we obtain

(v � r)v = ur�iv + vr�jv:

To avoid problems with the vector representation of the velocity at the pole and to maintain

compatibility with the scalar spectral transform method, we introduce the vorticity � � ~k �r�v

and the divergence Æ � r�v.

To obtain v from � and Æ, we need another pair of equations. The Helmholtz theorem, which

separates the horizontal velocity vector v into a scalar stream function  and a scalar velocity

potential �, states

v = ~k �r +r�; (5)

or in component form

u =
1

a cos �

@�

@�
�

1

a

@ 

@�

and

v =
1

a cos �

@ 

@�
+

1

a

@�

@�
:

Application of the curl and divergence operators to Eqs.(5) give the relationships for the

prognostic variables � and Æ in terms of the stream function and the velocity potential

� = r2 ; (6)

and

Æ = r2�: (7)

Using the vector identity

(v � r)v � r(
v � v

2
) + �~k � v;

the horizontal momentum equation can be expanded to the form

@v

@t
+r� = �(� + f)~k � v �r(�s +

v � v

2
): (8)
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Also, by direct computation and the de�nition of the Laplacian operator on a vector function,

we obtain

r� (r� v) = r(r � v)�r2v +
1

a2 cos2 �
v �

2 sin �

a2 cos2 �
~k �

@v

@�

or without the �rst order derivatives, we rewrite it as

r� (r� v) = r(r � v)�
1

cos �
r2(v cos �)�

2 sin �

a cos �
F (9)

where

F =

0
B@ ��

Æ

1
CA : (10)

3.2 VORTICITY FORM

Applying ~k � r� to Eqs. (8) gives

@�

@t
= �~k � r � [(� + f)~k � v]:

Using
~k � r � [(� + f)~k � v] = r � (� + f)v

= (� + f)r � v + v � r(� + f)

= v � r� + (� + f)Æ + v � rf;

we obtain
@�

@t
= �v � r� � (� + f)Æ � v � rf

i.e.
d�

dt
= �(� + f)Æ � v � rf: (11)

By using � = � + f , we can rewrite Eqs. (11) as,

d�

dt
= ��Æ (12)

3.3 DIVERGENCE FORM

Application of the divergence operator to Eqs. (8) gives

@Æ

@t
+r2� = �r � [(� + f)~k � v]�r2(�s +

v � v

2
):

7



By using the vector identities, we obtain

r � [(� + f)~k � v] = �~k � r � (� + f)v

= �(� + f)~k � r � v + ~k � v �r(� + f)

= �(� + f)� + ~k � v �rf + ~k � v �r�:

Notice that

r� = r(~k � r � v) = ~k � [r� (r� v)]:

From Eqs. (9), we obtain

r� = ~k � (rÆ � ~F)

where

~F =
1

cos �
r2(v cos �) +

2 sin �

a cos �
F ; (13)

and F is de�ned in Eqs. (10). Then,

~k � v �r� = ~k � v � [~k � (rÆ � ~F)]

= ~k � [v � (rÆ � ~F)]~k � ~k � (v � ~k)(rÆ � ~F)

= v � (rÆ � ~F):

Combining terms, we obtain,

@Æ

@t
+r2� = (� + f)� � ~k � v �rf � v � (rÆ � ~F)�r2(�s +

v � v

2
)

i.e.
dÆ

dt
+r2� = (� + f)� � ~k � v �rf + v � ~F �r2(�s +

v � v

2
): (14)

In terms of �, Eqs. (14) is

dÆ

dt
+r2� = �(� � f)� ~k � v �rf + v � ~F �r2(�s +

v � v

2
): (15)

Note that the Eqs. (12) and (15) contain the substantial derivatives of two scalar functions.

This form is reminiscent of the forms derived by Truesdell and reported in Serrin [7]. We can

apply the semi-Lagrangian method directly to the vorticity and divergence equations to avoid

the complications of dealing with operations of the vector functions on the sphere.
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4 SEMI-IMPLICIT, SEMI-LAGRANGIAN FORMULATION

A three time level semi-Lagrangian method for the shallow water equations was described

in Ritchie [4]. For meteorological models the form of the method is based on a division of terms

in the equations between those involved in the fast moving gravity waves, and the slower moving

Rossby waves. Let G denote the fast moving wave terms and R the slower wave terms. Then

an advected scalar �eld F is represented by the equation

dF

dt
+G = R: (16)

Let subscripts ( )A, ( )M and ( )D represent quantities evaluated at the arrival point, mid-

point and departure point, respectively. Let superscripts � � 1, � and � + 1 represent the time

levels at which quantities are evaluated.

Integrating the Eqs. (16) along the trajectory between the departure point and the arrival

point

Z t�+1

t��1

dF

dt
dt+

Z t�+1

t��1
Gdt =

Z t�+1

t��1
Rdt:

The �rst term reduces exactly to

Z t�+1

t��1

dF

dt
dt = F �+1

A � F ��1
D ;

while the G and R terms must be approximated using quadrature rules. In this paper we use

Z t�+1

t��1
Rdt = 2�tR�

M +O(�t2) midpoint

Z t�+1

t��1
Gdt = �t(G�+1

A +G��1
D ) +O(�t3) trapezoidal

resulting in the formulation

F �+1
A � F ��1

D

2�t
+
G�+1
A +G��1

D

2
= R�

M : (17)

These three time level, \centered" approximations result in an O(�t) approximation to Eqs.

(16); the approximations to F and G are O(�t2). This approximation is the basis for most

9



three level semi-implicit SLT methods. The review article by Staniforth and Côt�e [8] discusses

the development of the SLT method and some of its applications. We note in particular that

Ritchie's [4] three level spectral shallow water model was based on this approximation.

We next introduce the spatial average at the midpoint as follows

F �+1
A � F ��1

D

2�t
+
G�+1
A +G��1

D

2
=
R�
A +R�

D

2
(18)

or

F �+1
A +�tG�+1

A = F ��1
D +�t[R�

A +R�
D �G��1

D ] � N:

The spatial averaging has been shown to reduce distortion produced by topographically forced

waves while only introducing a further approximation error of O(�x2) where �x is the length

of the trajectory (not the spatial resolution). Since the trajectory length is proportional to the

time step �t this is an acceptable error.

The arrival and departure components of N can be de�ned in terms of the R's and G's as

NA � �tR�
A (19)

and

ND � F ��1
D +�t[R�

D �G��1
D ]: (20)

The assignment of terms of the shallow water equations to G and R results in di�erent

numerical algorithms. If we take G � 0, then the algorithm is explicit in time. The explicit

method requires small timesteps to stabilize the gravity wave components of the solution. A

semi-implicit method results by assigning selected terms to G, terms that give rise to the gravity

waves. In the momentum equation, Eqs. (3), the gravity wave component, r�, is identi�ed with

the implicit G term and the Coriolis term is identi�ed with the explicit term, R. We take

G =

0
BBBBB@

0

r2�

��Æ

1
CCCCCA ; (21)

10



R =

0
BBBBB@

��Æ

�(� � f)� ~k � v �rf + v � ~F �r2(�s +
v�v
2 )

��Æ

1
CCCCCA ; (22)

where �+ ��+�s is the free surface geopotential and �� is a constant reference value; ~F is de�ned

in Eqs. (13).

The paper will focus on Eqs. (18) with G and R speci�ed by Eqs. (21) and (22). To this

end, let F be de�ned as

F =

0
BBBBB@
�

Æ

�

1
CCCCCA ; (23)

and substitute Eqs. (21) and (22) into (18), to obtain the semi-Lagrangian scheme for the

shallow-water model in vorticity-divergence form as

��+1A = N�

Æ�+1A +�t[r2�]�+1A = NÆ

��+1A +�t[ ��Æ]�+1A = N�;

(24)

where N = (N�; NÆ; N�)
T and N = NA + ND, the arrival and departure components of N , is

de�ned by

NA =

0
BBBBB@

�t[��Æ]�A

�t[�(� � f)� ~k � v �rf + v � ~F �r2(�s +
v�v
2 )]�A

�t[��Æ]�A

1
CCCCCA ; (25)

and

ND =

0
BBBBB@
���1D +�t[��Æ]�D

Æ��1D +�t[�(� � f)� ~k � v �rf + v � ~F �r2(�s +
v�v
2 )]�D ��t[r2�]��1D

���1D +�t[��Æ]�D ��t[ ��Æ]��1D

1
CCCCCA : (26)

There are no �rst order derivatives involving unknowns, and the only second-order operator

11



is the Laplacian. When the spectral transformation is used to discretize the equations, the

properties of Laplacian operator will simplify the computation of the solution.

12



5 SEMI-LAGRANGIAN INTERPOLATIONS

The following quantities in physical space must be interpolated at the departure points: v� ,

�� , Æ� , �� , ���1, Æ��1, ���1 and �(v � v)� , ����1. With these quantities, ND can be formed.

Alternatively, the sums of terms involved in ND can be formed at the grid points and then

interpolated to the departure points. This is computationally less expensive and introduces an

error only on the order of the interpolation error. The next section, explains how to compute

�(v � v)� and ����1 by using the spectral properties of the Laplacian operator.

The shape preserving tensor product interpolation scheme developed by Williamson and

Rasch [10] is used for all �elds involved in the calculation of the N 's. Their scheme is based on

a quasi-cubic interpolant.

The departure point calculation integrates the equation

dx

dt
= �v:

backwards along the trajectory from the arrival point. A second-order method is used to compute

the departure point as follows,

�D = �A � 2�tu(�M ; �M ; t)

�D = �A � 2�tv(�M ; �M ; t);
(27)

where (�M ; �M ) is the midpoint between the arrival point and departure point. The midpoint

of the trajectory is calculated by solving

�M = �A ��tu(�M ; �M ; t)

�M = �A ��tv(�M ; �M ; t);
(28)

using a �xed point iteration. At each step of this iteration for the midpoint, the velocity �eld

must be interpolated to the current estimate of the midpoint. Previous studies [8] indicate that

linear interpolation is adequate for accuracy in the solution of the shallow water equations. A

Lagrange cubic was used for interpolation of the velocity �eld.

To avoid the singularity at the poles and the complexity of interpolation of the velocity �eld,

a three-dimensional technique, studied by Ritchie [5], is used, which projects all two dimensional

vectors on the sphere to the three-dimensional vectors in Cartesian coordinates. Let (X;Y;Z)

represent the normalized Cartesian coordinates (x=a; y=a; z=a) and ~uA and ~vA be the normalized

13



velocities

~uA = u(�A; �A; t)=a

~vA = v(�A; �A; t)=a:

The arrival point and the normalized Cartesian velocity components are

XA = cos �A cos �A

YA = sin�A cos �A

ZA = sin �A;

(29)

and
_XA = �~uA sin�A � ~vA cos �A sin �A

_YA = ~uA cos �A � ~vA sin�A sin �A

_ZA = ~vA cos �A:

We obtain a similar formulation in three dimensions for the calculation of the midpoint

XM = bM (XA ��t _XM )

YM = bM (YA ��t _YM )

ZM = bM (ZA ��t _ZM );

(30)

where

bM = [1 +�t2( _X2
M + _Y 2

M + _Z2
M )� 2�t(XA

_XM + YA _YM + ZA _ZM )]�1=2

and bM ensures that (XM ; YM ; ZM ) is on the sphere. The iteration starts by setting ( _XM ; _YM ; _ZM ) =

( _XA; _YA; _ZA). After computing (XM ; YM ; ZM ), the Cartesian velocity ( _XM ; _YM ; _ZM ) is inter-

polated at the midpoint with a Lagrange cubic.

Once the midpoint iteration has converged the departure point is calculated by using a

similar equation to (27) as follows,

XD = XA � 2�t _XM

YD = YA � 2�t _YM

ZD = ZA � 2�t _ZM ;

(31)
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or by using the symmetry with the arrival point about the midpoint,

XD = 2bDXM �XA

YD = 2bDYM � YA

ZD = 2bDZM � ZA;

(32)

where bD = XAXM + YAYM + ZAZM .

Notice that Eqs. (31) and (32) are equivalent. For example, let us consider XD only. From

Eqs. (30) and (32),

XD = 2bDbM (XA ��t _XM )�XA

= (2bDbM � 1)XA � 2bDbM�t _XM

= XA � 2�t _XM ;

with bDbM = 1 because XM
_XM + YM _YM + ZM _ZM = 0 (multiply (30) by XM , YM and ZM ,

respectively, and sum).

The departure point calculation is completed by computing the spherical coordinates from

(29),

�D = tan�1(YD=XD) and �D = sin�1(ZD):
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6 SPECTRAL SEMI-IMPLICIT FORMULATION

The combination of the semi-Lagrangian method with the spectral transform method has

proven to be a powerful technique, providing fast solution of the semi-implicit equations and high

spatial accuracy. Williamson and Rasch [10] observed that the semi-Lagrangian treatment of the

advection eliminates the nonlinear aliasing of terms in the spectral representation. This allows

use of more terms of the spectral expansion but using the same physical grid and e�ectively

doubling the resolution at little extra cost.

The spectral transform, or more correctly, the spherical harmonic transform, is based on the

representation of scalar �elds as a linear combination of spherical harmonics as

�(�; �) =
MX

m=�M

N(m)X
n=jmj

�mn P
m
n (�)eim�; (33)

and

�mn =

Z 1

�1

1

2�

Z 2�

0
�(�; �)e�im�d�Pm

n (�)d�; (34)

where Pm
n are the normalized associated Legendre functions de�ned as

Pm
n (�) =

s
(2n+ 1)

2

(n�m)!

(n+m)!
(1� �2)

1

2
md

mPn(�)

d�m
; for m � 0; (35)

and

Pm
n (�) = (�1)�mP�m

n (�); for m < 0; (36)

such that

Z +1

�1
[Pm

n (�)]2d� = 1;

and Pn are the Legendre polynomials de�ned by

Pn(�) =
1

2nn!

dn(�2 � 1)n

d�n
:

The latitudinal coordinate varies between [�1:1] with � = sin �. For all n and m, we obtain,

Pm
n (�) = 0; if n < m: (37)
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(For properties of the associated Legendre functions, the reader is referred to the Appendix B

in Washington and Parkinson [9].)

Once spectral coeÆcients are known, the transformation from spectral to physical space is

accomplished using (33) and is usually referred to as harmonic synthesis. The transform from

physical space to spectral space (harmonic analysis) uses a discrete version of the continuous

transform (34),

�m(�) =
1

2�

Z 2�

0
�(�; �)e�im�d� =

1

I

IX
i=1

�(�i; �)e
�im�i ; (38)

and

�mn =

Z +1

�1
�m(�)Pm

n (�)d� =
JX
j=1

�m(�j)P
m
n (�j)wj ; (39)

where

�i =
2�i

I
; wj =

2(1� �2j)

[JPJ�1(�j)]2
;

and �j denote the Gaussian latitudes. I is the number of gridpoints in the east-west direction. J

is the number of Gaussian latitudes from pole to pole. wj is the Gaussian weight at latitude �j .

The Gaussian latitudes �j are determinated from the roots of the Legendre polynomial PJ (�)

and, the Gaussian weights satisfy the relationship,

JX
j=1

wj = 2:

Since the spherical harmonic functions are eigensolutions of the Laplace equation we have

r2Pm
n (�)eim� =

�n(n+ 1)

a2
Pm
n (�)eim�:

Applying the transformation given in Eqs. (34) to each term of Eqs. (24), we will obtain the

spectral formulation. Only two types of terms are involved: the terms with constant coeÆcients

and the terms with a Laplacian operator. The spectral representation of Laplacian operator is

given by

�� =
MX

m=�M

N(m)X
n=jmj

�n(n+ 1)

a2
�mn P

m
n (�)eim�: (40)

For simplicity we drop the index � + 1 and the subscript A to obtain the spectral form of
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the governing equations,

�mn = fN�g
m
n ; (41)

Æmn +�tC(n)�mn = fNÆg
m
n ; (42)

�mn +�t��Æmn = fN�g
m
n ; (43)

where

C(n) = �
n(n+ 1)

a2
;

and a is the radius of the earth. �mn is directly calculated by (41) and the last two equations,

(42) and (43), can be solved together for the advanced time level values in spectral space for Æmn

and �mn . For each mode (m;n) a 2� 2 system of equations needs to be solved,

2
4 1 �tC(n)

�t�� 1

3
5
2
4 Æmn

�mn

3
5 =

2
4 fNÆg

m
n

fN�g
m
n

3
5 (44)

This is the same system found in the semi-implicit spectral method of Hack and Jakob [2]. The

solution can be expressed by an application of Cramer's rule.

With �mn , Æ
m
n and �mn at the arrival points at the new time level, the synthesis (inverse

spherical harmonic transform) is used to obtain the values of � and v in physical space. Notice

that the �mn can be directly calculated from �mn at the new time level with the relationship

� = � + f . The components of v are obtained through the diagnostic relationship in terms of

�mn and Æmn ,

U(�i; �j) = �
MX

m=�M

N(m)X
n=jmj

a

n(n+ 1)
[imÆmn P

m
n (�j)� �mn H

m
n (�j)]e

im�i (45)

and

V (�i; �j) = �
MX

m=�M

N(m)X
n=jmj

a

n(n+ 1)
[im�mn P

m
n (�j) + Æmn H

m
n (�j)]e

im�i (46)

where

Hm
n (�) � (1� �2)

dPm
n (�)

d�
: (47)
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Finally, the velocity �eld is calculated on physical grid points with

u(�i; �j ; t) = U(�i; �j)= cos �j

v(�i; �j; t) = V (�i; �j)= cos �j

and �, Æ and � are recovered on physical grid point with formula (33).

20



7 NUMERICAL EXPERIMENTS AND RESULTS

This section presents numerical results of �ve standard test cases described in Williamson

et al. [11]. The cases can be used to characterize the numerical properties of a method and their

appropriateness for numerical weather prediction and climate modeling. They provide a means

of addressing accuracy as well as quality of solution in terms of conserved quantities. All results

are based on the standard T42 mesh as shown in Fig. 1.
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Fig. 1: Standard T42 mesh viewed from (330,10)

The discussion will focus on the properties of the solution and the errors in comparison with

the T42 Eulerian spectral model. There are four sources of error:

� the truncation error of the time stepping method,

� the error associated with approximation of spatial derivatives,

� the interpolation error of the semi-Lagrangian scheme, and

� the error associated with computing trajectories in the semi-Lagrangian scheme.

It is not always possible to determine which is the dominant error. Information is gained by

performing a number of experiments not reported here. For example, the test can be run with

several values for the timestep �t to determine if the truncation error is dominant.
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7.1 ADVECTION TEST

In this case, we let � = ��0:05, so the cosine bell is advected over the poles at a slight angle.

The initial height �eld, which should be maintained throughout the course of one rotation, is

shown in Fig. 2a. The �nal height �eld after one rotation (12 days or 864 time steps of 1200

seconds) is shown in Fig. 2b. Comparing with the initial height �eld, it is slightly di�used.

The di�erence plot in Fig. 2c illustrates the overall structures of the �nal height �eld. It is

almost symmetric, but elongated downstream. This is little di�erent from the result of the

Eulerian spectral model reported in Jakob et al. [3]. The semi-Lagrangian scheme introduces

more dissipation due to the low order cubic interpolation.

The semi-Lagrangian method is relatively insensitive to the time step used. A small timestep

is not more accurate leading to the conclusion that the chief source of error is in the semi-

Lagrangian interpolation and the number of times this interpolation is used.

The l1, l2, and l1 error measures are presented in Fig. 2d. These errors show the same

behavior as in Jakob et al. [3], i.e. a signi�cant error associated with the initial representation

of the cosine bell followed by a systematic monotonic increase as the cosine bell is advected

around the sphere. As the cosine bell crosses the poles at 3 and 9 days, the l1 error jumps

because of the large meridional grid interval from the missing pole point on the Gaussian grid.

7.2 STEADY, ZONAL FLOW TEST

The global zonal geostrophic ow case is a trivial problem for the spectral transform method

because the steady solution is exactly representable with a low order spherical harmonic. Errors

in the numerical solution from the semi-Lagrangian model reect the accumulation of rounding

errors associated with the SLT cubic interpolation. Figure 3a shows the di�erence between the

analytic solution and the �nal height �eld after one rotation (5 days). The l1, l2, and l1 error

measures are shown in Fig. 3b. Errors are small and smooth, but monotonically increasing in

time.

7.3 STEADY STATE ZONAL FLOW WITH COMPACT SUPPORT

The primary di�erence between this case and the previous case is that the initial condition

here is not exactly representable in the spherical harmonic basis. Even so, the errors resulting

from the spherical harmonic truncation are small in comparison to the cubic interpolation of

the semi-Lagrangian method. Figure 4a shows the di�erence between the analytic solution and

the �nal height �eld after one rotation (5 days). The l1, l2, and l1 error measures are shown in
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Lmax(h)
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Fig. 2: Case 1 Contour plots of the height �eld for � = �=2� 0:05 and �t = 1200 seconds.

(a) Initial �eld; (b) after one rotation (12 days); (c) Height �eld error; (d) l1 (solid), l2
(short dash), and l1 (long dash) errors. Contour interval is 100m for the �eld and 2.5m for

the error.
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Fig. 3: Case 2 (a) Contour plot of the height �eld error for � = �=2� 0:05 and �t = 1200

seconds. Contour interval is 0.05m. (b) l1 (solid), l2 (short dash), and l1 (long dash) errors.

Fig. 4b. As in the previous case, the errors are small and smooth, but monotonically increasing

in time.

7.4 ZONAL FLOW OVER AN ISOLATED MOUNTAIN

This case does not admit an analytic solution. It consists of the zonal ow, de�ned in Case

2, impinging on a mountain. The wind and height �eld are the same when � = 0. The equivalent

depth h0 is 5960m for this case and the surface or mountain height is given by

hs = hs0(1� r=R);

where hs0 = 2000m, R = �=9 and r2 = min[R2; (� � �c)
2 + (� � �c)

2]. The center is taken as

�c = 3�=2 and �c = �=6.

The representation of the mountain height and the varying depth of the uid for this case

are a challenge for all methods. Since the uid is not in geostrophic balance at the initial time,

a rapidly moving internal gravity wave is generated. Figure 5a shows the di�erence in height

�eld and initial condition 1 day into the integration. At the opposite side of the sphere from the

mountain the expansion wave has coalesced.
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Fig. 4: Case 3 (a) Contour plot of the height �eld error after 5 days, for � = �=2� 0:05

and �t = 1200 seconds; (b) l1 (solid), l2 (short dash), and l1 (long dash) errors.

The height �eld is shown in Fig. 6a-d for the initial state, day 5, day 10, and day 15

respectively. These results are quite similar to the spectral Eulerian model results, i.e. a rapid

evolution from a meridionally smooth zonally symmetric ow to an irregular high wavenumber

state by day 15. Because the semi-Lagrangian interpolation smoothes the �elds, the height �eld

is without any spectral ringing or evidence of instability in the vicinity of the mountain. The

location and magnitude of the major ow features are accurately captured and reect the same

features as the spectral T42 solution.

The change in global quantities of mass, enstrophy, and total energy from the initial condi-

tions as a function of time are shown in Fig. 7. The total mass and enstrophy change very little

over the integration. The total energy is increasing, with a total change of 1.3% by 15 days.

The semi-Lagrangian scheme is not energy conserving, in the strict sense. This is a result of the

advective formulation. But these errors are relatively small and no attempt has been made to

compensate for mass or energy lost in the results presented. For application to climate modeling,

where long time integrations are required, a �xer must be added to prevent imbalances from

a�ecting the asymptotic states.
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Fig. 5: Case 5 The di�erence in height �eld from initial condition after one day for

�t = 1200 seconds.

It should also be noted that no added di�usion was necessary to control the tail of the energy

spectra as was done in the Eulerian spectral method. Apparently enough di�usion is introduced

by SLT interpolation.

7.5 ROSSBY-HAURWITZ WAVE

The last test case is a wavenumber four, Rossby-Haurwitz wave. Rossby-Haurwitz waves are

analytic solutions to the barotropic vorticity equation. The relation to solutions of the nonlinear

shallow water equations is not quite clear. For a stable wave pattern like wavenumber four, the

test can indicate if there are other modes of systematic error that a scheme introduces. In Fig.

8a-d, the basic wave pattern is well maintained through the entire simulation. The spectral

Eulerian solution requires introduction of arti�cial dissipation (for example a biharmonic term)

to control the tail of the energy spectrum. The semi-Lagrangian method apparently has no need

for this as enough dissipation is introduced by the method.

The change in global quantities of mass, enstrophy, and total energy from the initial condi-

tions as a function of time are showed in Fig. 9. For this case, the total mass almost has no

change, but the enstrophy and the total energy is decreasing (eventually), with a total change

of -1.2% by 15 days.
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Fig. 6: Case 5 (cont.) Contour plots of the height �eld for �t = 1200 seconds at (a) day

0, (b) day 5, (c) day 10, and (d) day 15 on a cylindrical equidistant projection. Contour

interval is 50m.
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Fig. 7: Case 5 (cont.) Relative change of global mass (solid), relative change of total

energy (short dash), and enstrophy (long dash).
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Fig. 8: Case 6 Contour plots of the height �eld for �t = 1200 seconds at (a) day 0, (b)

day 1, (c) day 7, and (d) day 14.
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Fig. 9: Case 6 (cont.) Change in global mass (solid), total energy (short dash), and

enstrophy (long dash).
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8 CONCLUSIONS

The semi-Lagrangian transport algorithm is an important component of global atmospheric

circulation models, and will continue to be attractive for the next generation of models because

of its accuracy and ability to take long timesteps. A new advective formulation of the shallow

water equations in a spherical geometry allows a natural application of the SLT algorithm.

The method presented here combines semi-Lagrangian transport with a spectral, semi-implicit

algorithm. The results compare favorably in terms of accuracy, stability and smoothness of

solution with a spectral Eulerian shallow water equation model. Future work will extend this

formulation to the full baroclinic equations and explore solutions using two time-level semi-

Lagrangian methods as well as other gridding systems.
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